The present study applies a chemical activity-based approach to: 1) evaluate environmental concentrations of di-ethylhexyl phthalate (DEHP; n = 23 651) and its metabolite mono-ethylhexyl phthalate (MEHP; n = 1232) in 16 environmental media from 1174 studies in the United States, Canada, Europe, and Asia, and in vivo toxicity data from 934 studies in 20 species, as well as in vitro biological activity data from the US Environmental Protection Agency's Toxicity Forecaster and other sources; and 2) conduct a comprehensive environmental risk analysis. The results show that the mean chemical activities of DEHP and MEHP in abiotic environmental samples from locations around the globe are 0.001 and 10 , respectively. This indicates that DEHP has reached on average 0.1% of saturation in the abiotic environment. The mean chemical activity of DEHP in biological samples is on average 100-fold lower than that in abiotic samples, likely because of biotransformation of DEHP in biota. Biological responses in both in vivo and in vitro tests occur at chemical activities between 0.01 to 1 for DEHP and between approximately 10 and 10 for MEHP, suggesting a greater potency of MEHP compared with DEHP. Chemical activities of both DEHP and MEHP in biota samples were less than those causing biological responses in the in vitro bioassays, without exception. A small fraction of chemical activities of DEHP in abiotic environmental samples (i.e., 4-8%) and none (0%) for MEHP were within the range of chemical activities associated with observed toxicological responses in the in vivo tests. The present study illustrates the chemical activity approach for conducting risk analyses. Environ Toxicol Chem 2017;36:1483-1492. © 2016 SETAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.