In this paper an analytical model is used for the development of the controls for the optimal longitudinal performances of two small UAV aircraft which differ exclusively on the wing: an optimum Fixed Wing (FWA) and a telescopic and camber varying Morphing Wing (MWA). The aerodynamic data of the two wings is based on previous coupled FEM-CFD work. Both static and dynamic formulations for the longitudinal control are presented and applied to the two aircrafts. The static results show that the MWA has an extended operational range when compared to the FWA with the exception of the rate of climb which is slightly penalized. The dynamic results include the analysis of 128 different missions which include climb-cruise missions and descent missions. The dynamic formulation shows very satisfactory results in optimal control calculation for trajectory tracking. Energy actuation estimates based on the optimal control obtained for the missions are calculated and total mission energy consumption estimates comparisons are presented. The actuation energy estimates show that actuation energy is two orders of magnitude inferior to the engine output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.