Use of resistant cultivars is one of the most important measures to reduce the risk of Fusarium head blight (FHB, caused by various Fusarium spp.) and mycotoxins in cereals. Research on resistance to FHB has mainly focused on wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) and is very limited in oat (Avena sativa L.). In Norway, routine testing of cultivars and breeding lines has been performed in spawn‐inoculated field experiments with Fusarium graminearum Schwabe as part of a concerted research and breeding effort to improve FHB resistance in oat. Data on FHB symptom, days to flowering, and plant height have been collected during the field seasons. Together with the field data, deoxynivalenol (DON) content and germination capacity of harvested kernels are used to score resistance levels of genotypes. In this paper, results are presented from a combined analysis of data from 9 yr of field trials from 2008 to 2016. Consistent and highly significant differences in DON content and germination capacity were documented among the current oat cultivars on the Norwegian market. These two negatively correlated parameters are used as selection criteria in breeding since they are relevant for the different end uses of the grains: DON content for use as food and feed, and germination capacity for seed production. In the paper, we discuss the pros and cons of the various screening methods and parameters used in assessing FHB resistance in oat and present the progress made in resistance breeding based on an established field testing methodology.
The northwards expansion of barley production requires adaptation to longer days, lower temperatures and stronger winds during the growing season. We have screened 169 lines of the current barley breeding gene pool in the Nordic region with regards to heading, maturity, height, and lodging under different environmental conditions in nineteen field trials over 3 years at eight locations in northern and central Europe. Through a genome-wide association scan we have linked phenotypic differences observed in multi-environment field trials (MET) to single nucleotide polymorphisms (SNP). We have identified an allele combination, only occurring among a few Icelandic lines, that affects heat sum to maturity and requires 214 growing degree days (GDD) less heat sum to maturity than the most common allele combination in the Nordic spring barley gene pool. This allele combination is beneficial in a cold environment, where autumn frost can destroy a late maturing harvest. Despite decades of intense breeding efforts relying heavily on the same germplasm, our results show that there still exists considerable variation within the current breeding gene pool and we identify ideal allele combinations for regional adaptation, which can facilitate the expansion of cereal cultivation even further northwards.
Spring barley (Hordeum vulgare L.
The powdery mildew fungus, Blumeria graminis f. sp. hordei is a worldwide threat to barley (Hordeum vulgare L. ssp. vulgare) production. One way to control the disease is by the development and deployment of resistant cultivars. A genome-wide association study was performed in a Nordic spring barley panel consisting of 169 genotypes, to identify marker-trait associations significant for powdery mildew. Powdery mildew was scored during three years (2012–2014) in four different locations within the Nordic region. There were strong correlations between data from all locations and years. In total four QTLs were identified, one located on chromosome 4H in the same region as the previously identified mlo locus and three on chromosome 6H. Out of these three QTLs identified on chromosome 6H, two are in the same region as previously reported QTLs for powdery mildew resistance, whereas one QTL appears to be novel. The top NCBI BLASTn hit of the SNP markers within the novel QTL predicted the responsible gene to be the 26S proteasome regulatory subunit, RPN1, which is required for innate immunity and powdery mildew-induced cell death in Arabidopsis. The results from this study have revealed SNP marker candidates that can be exploited for use in marker-assisted selection and stacking of genes for powdery mildew resistance in barley.
Genome-Wide Association Studies (GWAS) of four Multi-parent Advanced Generation Inter-Cross (MAGIC) populations identified nine regions on chromosomes 1H, 3H, 4H, 5H, 6H and 7H associated with resistance against barley scald disease. Three of these regions are putatively novel resistance Quantitative Trait Loci (QTL). Barley scald is caused by Rhynchosporium commune, one of the most important barley leaf diseases that are prevalent in most barley-growing regions. Up to 40% yield losses can occur in susceptible barley cultivars. Four MAGIC populations were generated in a Nordic Public–Private Pre-breeding of spring barley project (PPP Barley) to introduce resistance to several important diseases. Here, these MAGIC populations consisting of six to eight founders each were tested for scald resistance in field trials in Finland and Iceland. Eight different model covariate combinations were compared for GWAS studies, and the models that deviated the least from the expected p-values were selected. For all QTL, candidate genes were identified that are predicted to be involved in pathogen defence. The MAGIC progenies contained new haplotypes of significant SNP-markers with high resistance levels. The lines with successfully pyramided resistance against scald and mildew and the significant markers are now distributed among Nordic plant breeders and will benefit development of disease-resistant cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.