Endometrial carcinoma (EnCa) is one of the deadliest gynecological malignancies. The purpose of the current study was to develop an immune-related lncRNA prognostic signature for EnCa. In the current research, a series of systematic bioinformatics analyses were conducted to develop a novel immune-related lncRNA prognostic signature to predict disease-free survival (DFS) and response to immunotherapy and chemotherapy in EnCa. Based on the newly developed signature, immune status and mutational loading between high-and low-risk groups were also compared. A novel 13-lncRNA signature associated with DFS of EnCa patients was ultimately developed using systematic bioinformatics analyses. The prognostic signature allowed us to distinguish samples with different risks with relatively high accuracy. In addition, univariate and multivariate Cox regression analyses confirmed that the signature was an independent factor for predicting DFS in EnCa. Moreover, a predictive nomogram combined with the risk signature and clinical stage was constructed to accurately predict 1-, 2-, 3-, and 5-year DFS of EnCa patients. Additionally, EnCa patients with different levels of risk had markedly different immune statuses and mutational loadings. Our findings indicate that the immune-related 13-lncRNA signature is a promising classifier for prognosis and response to immunotherapy and chemotherapy for EnCa.
Introduction Acute lymphoblastic leukemia (ALL) is a usual hematological tumor, which was featured by malignant proliferation of lymphoid progenitor cells. Many important factors participate into the regulation of ALL, including proteins. PAQR3 (also named RKTG) has been proved to take part in many human cancers by acting as a tumor suppressor. PAQR3 has bee n shown to repress human leukemia cells proliferation and induce cell apoptosis, but its role and relevant regulatory mechanism on cell proliferation and ferroptosis in ALL needs more exploration. Methods The genes expression was detected through quantitative reverse transcription polymerase chain reaction (mRNA) or western blot (protein). The cell proliferation was assessed through Cell Counting Kit‐8 and 5‐ethynyl‐2‐deoxyuridine assays. The levels of MDA, DCF, and intracellular free Fe in ALL cells were tested through the commercial kits. The cell apoptosis was determined through flow cytometry analysis. The binding ability of PAQR3 and nuclear factor erythroid 2‐related factor 2 (Nrf2) was verified through pull down assay. Results PAQR3 expression was firstly assessed in ALL patients and cell lines, and discovered to be downregulated. It was verified that PAQR3 suppressed ALL cells proliferation. Further experiments proved that PAQR3 aggravates ferroptosis in ALL. In addition, AQR3 bound with Nrf2, and modulated its expression through ubiquitination in ALL. Finally, through rescue assays, it was demonstrated that Nrf2 overexpression reversed the effects of PAQR3 on cell proliferation and ferroptosis. Conclusion Findings from our work uncovered that PAQR3 inhibited proliferation and aggravated ferroptosis in ALL through modulation Nrf2 stability. This study suggested that PAQR3 may serve as an effective biological marker for ALL treatment.
Nuclear factor-κB (NF-κB) is widely involved in various lymphoid malignancies. However, its exact functional role and potential regulatory mechanisms in Hodgkin's lymphoma (HL) remains unclear. The present study aimed to investigate the regulatory mechanism of NF-κB in HL by analysis of a gene expression profile that was obtained from HL cells with or without NF-κB subunit 2 (NFKB2) knockdown. The GSE64234 dataset containing 6 HL cell line specimens transfected with small interfering (si)RNA against NFKB2 and 6 control specimens transfected with non-targeting siRNA sequences was downloaded from the Gene Expression Omnibus database. Based on these data, differentially expressed genes (DEGs) were screened for following data preprocessing. Functional enrichment analysis was subsequently conducted among the identified upregulated and downregulated DEGs. Additionally, a protein-protein interaction (PPI) network was constructed and module analyses were performed. Finally, microRNAs (miRNAs/miRs) targeting the identified DEGs were predicted for the construction of a miRNA-target regulatory network. A total of 253 DEGs were identified, consisting of 109 upregulated and 144 downregulated DEGs. Pathway enrichment analysis revealed that B-cell lymphoma 2-like 1 (BCL2L1) was significantly enriched in the NF-κB signaling pathway, and colony-stimulating factor 2 (CSF2) and BCL2L1 were enriched in the Jak-signal transducer and activator of transcription (STAT) signaling pathway. BCL2L1 and CSF2 were determined to be hub genes in the PPI network. A total of 6 miRNAs, including let-7a-5p, miR-9-5p, miR-155-5p, miR-135a-5p, miR-17-5p and miR-375, were identified in the miRNA-target regulatory network. The results of the present study indicated that NFKB2 may be involved in HL development through regulation of BCL2L1, CSF2, miR-135a-5p, miR-155-5p and miR-9-5p expression, as well as the modulation of Jak-STAT and NF-κB signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.