This report discusses the topic of periodic cruise trajectories for hypersonic flight. An extensive review of previous work associated with periodic cruise trajectories for subsonic, supersonic and hypersonic flight is presented to provide the background for this investigation. The primary objective of this report is to discuss why periodic cruise trajectories lead to near fuel-optimal trajectories from a heuristic, mathematical and computational perspective with air breathing propulsion. Results to date indicate that periodic achieves greater fuel savings by exchanging kinetic and potential energy more efficiently. The vehicle attempts to chatter back and forth between where the vehicle wants to fly for optimum aerodynamic and propulsive performance. Results from computational simulations are inconclusive and require further work to define appropriate interfaces for aerodynamic and propulsion data decks for input into the POST software. The notional design of a vehicle to fly periodic hypersonic cruise trajectories was improved by including concepts for engine installation, flight controls and by including considerations for off-design performance. This notional design provides a better starting point for more serious and complete vehicle design studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.