Concentration–discharge (C‐Q) relationships reflect material sources, storage, reaction, proximity, and transport in catchments. Differences in hydrologic pathways and connectivity influence observed C‐Q patterns at the catchment outlet. We examined solute and sediment C‐Q relationships at event and interannual timescales in a small mid‐Atlantic (USA) catchment. We found systematic differences in the C‐Q behaviour of geogenic/exogenous solutes (e.g., calcium and nitrate), biologically associated solutes (e.g., dissolved organic carbon), and particulate materials (e.g., total suspended solids). Negative log(C)–log(Q) regression slopes, indicating dilution, were common for geogenic solutes whereas positive slopes, indicating concentration increase, were common for biologically associated solutes. Biologically associated solutes often exhibited counterclockwise hysteresis during events whereas geogenic solutes exhibited clockwise hysteresis. Across event and interannual timescales, solute C‐Q patterns are linked to the spatial distribution of hydrologic sources and the timing and sequence of hydro‐biogeochemical source contributions to the stream. Groundwater is the primary source of stormflow during the earliest and latest stages of events, whereas precipitation and soil water become increasingly connected to the stream near peakflow. This sequence and timing of flowpath connectivity results in dilution and clockwise hysteresis for geogenic/exogenous solutes and concentration increase and counterclockwise hysteresis for biologically associated solutes. Particulate materials demonstrated positive C‐Q slopes over the long‐term and clockwise hysteresis during individual events. Drivers of particulate and solute C‐Q relationships differ, based on longitudinal and lateral expansion of active channels and changing shear stresses with increasing flows. Although important distinctions exist between the drivers of solute and sediment C‐Q relationships, overall solute and sediment C‐Q patterns at event and interannual timescales reflect consistent catchment hydro‐biogeochemical processes.
Increased deposition of reactive atmospheric N has resulted in the nitrogen saturation of many forested catchments worldwide. Isotope-based studies from multiple forest sites report low proportions (mean 5 10%) of unprocessed atmospheric nitrate in streams during baseflow, regardless of N deposition or nitrate export rates. Given similar proportions of atmospheric nitrate in baseflow across a variety of sites and forest types, it is important to address the postdepositional drivers and processes that affect atmospheric nitrate transport and fate within catchments. In a meta-analysis of stable isotope-based studies, we examined the influence of methodological, biological, and hydrologic drivers on the export of atmospheric nitrate from forests. The d values tended to increase with increasing baseflow discharge at all sites examined. To explain these differences, we present a conceptual model of hydrologic flowpath characteristics (e.g., saturation overland flow versus subsurface stormflow) that considers the influence of topography on landscape-stream hydrologic connectivity and delivery of unprocessed atmospheric nitrate to streams. Methodological biases resulting from differences in sampling frequency and stable isotope analytical techniques may further influence the perceived degree of unprocessed atmospheric nitrate export. Synthesis of results from numerous isotope-based studies shows that small proportions of unprocessed atmospheric nitrate are common in baseflow. However, hydrologic, topographic, and methodological factors are important drivers of actual or perceived elevated contributions of unprocessed atmospheric nitrate to streams.
Nitrogen (N) deposition affects forest biogeochemical cycles worldwide, often contributing to N saturation. Using long-term (>30-year) records of stream nitrate (NO 3 -) concentrations at Fernow Experimental Forest (West Virginia, USA), we classified four watersheds into N saturation stages ranging from Stage 0 (N-limited) to Stage 3 (Nsaturated). We quantified NO 3 -contributions from atmospheric and microbial sources using d 15 N, d 18 O, and D 17 O of NO 3 -and characterized the concentrations and isotopes of NO 3 -in precipitation. Despite receiving identical atmospheric inputs, the proportions of atmospheric NO 3 -in streams averaged from 7 to 10% in the hardwood watersheds (stages 1, 2, and 3) and 54% in the conifer watershed (Stage 0). This suggests that the hardwood watersheds may be less responsive to future reductions in N deposition than the conifer watershed, at least in the short term. As shown in other studies, atmospheric NO 3 -proportions were higher during stormflow. Despite large proportions of atmospheric NO 3 -in the Stage 0 stream, total atmospheric NO 3 --N flux from this watershed (2.9 g ha -1 ) was lower than fluxes in the other watersheds (range = 117.8-338.5 g ha -1 ). Seasonal patterns of d 15 N-NO 3 -in the hardwood watersheds suggest enrichment of the soil NO 3 -pool during the growing season due to plant uptake. In all watersheds, d 18 O-based mixing models over-estimated atmospheric NO 3 -contributions to streams by up to 12% compared to D 17 O-based estimates. Our results highlight the importance of atmospheric deposition as a NO 3 -source in low-concentration streams and demonstrate the advantage of using D 17 O-NO 3 -over d 18 O-NO 3 -for NO 3 -source apportionment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.