Here are the proofs of your article.• You can submit your corrections online, via e-mail or by fax.• For online submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers.• You can also insert your corrections in the proof PDF and email the annotated PDF.• For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page.• Remember to note the journal title, article number, and your name when sending your response via e-mail or fax.• Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown.• Check the questions that may have arisen during copy editing and insert your answers/ corrections.• Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript.• The publication of inaccurate data such as dosages and units can have serious consequences.Please take particular care that all such details are correct.• Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal's style. Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.• If we do not receive your corrections within 48 hours, we will send you a reminder.• Your article will be published Online First approximately one week after receipt of your corrected proofs. This is the official first publication citable with the DOI. Further changes are, therefore, not possible.• The printed version will follow in a forthcoming issue. Please noteAfter online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL: http://dx.doi.org/[DOI].If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information go to: http://www.link.springer.com.Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us if you would like to have these documents returned.
Gas hydrates consist of hydrogen-bonded water frameworks enclosing guest gas molecules and have been the focus of intense research for almost 40 y, both for their fundamental role in the understanding of hydrophobic interactions and for gas storage and energy-related applications. The stable structure of methane hydrate above 2 GPa, where CH4 molecules are located within H2O or D2O channels, is referred to as methane hydrate III (MH-III). The stability limit of MH-III and the existence of a new high-pressure phase above 40 to 50 GPa, although recently conjectured, remain unsolved to date. We report evidence for a further high-pressure, room-temperature phase of the CH4–D2O hydrate, based on Raman spectroscopy in diamond anvil cell and ab initio molecular dynamics simulations including nuclear quantum effects. Our results reveal that a methane hydrate IV (MH-IV) structure, where the D2O network is isomorphic with ice Ih, forms at ∼40 GPa and remains stable up to 150 GPa at least. Our proposed MH-IV structure is fully consistent with previous unresolved X-ray diffraction patterns at 55 GPa [T. Tanaka et al., J. Chem. Phys. 139, 104701 (2013)]. The MH-III → MH-IV transition mechanism, as suggested by the simulations, is complex. The MH-IV structure, where methane molecules intercalate the tetrahedral network of hexagonal ice, represents the highest-pressure gas hydrate known up to now. Repulsive interactions between methane and water dominate at the very high pressure probed here and the tetrahedral topology outperforms other possible arrangements in terms of space filling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.