We have developed an analytical method, consisting of ion-pair liquid chromatography coupled to electrospray ionization mass spectrometry (IP-LC-ESI-MS), for the simultaneous quantitative analysis of several key classes of polar metabolites, like nucleotides, coenzyme A esters, sugar nucleotides, and sugar bisphosphates. The use of the ion-pair agent hexylamine and optimization of the pH of the mobile phases were critical parameters in obtaining good retention and peak shapes of many of the above-mentioned polar and acidic metabolites that are impossible to analyze using standard reversed-phase LC/MS. Optimum conditions were found when using a gradient from 5 mM hexylamine in water (pH 6.3) to 90% methanol/10% 10 mM ammonium acetate (pH 8.5). The IP-LC-ESI-MS method was extensively validated by determining the linearity (R2 > 0.995), sensitivity (limit of detection 0.1-1 ng), repeatability, and reproducibility (relative standard deviation <10%). The IP-LC-ESI-MS method was shown to be a useful tool for microbial metabolomics, i.e., the comprehensive quantitative analysis of metabolites in extracts of microorganisms, and for the determination of the energy charge, i.e., the cellular energy status, as an overall quality measure for the sample workup and analytical protocols.
A commercial prebiotic galacto-oligosaccharide mixture (Vivinal GOS) was extensively characterized using a combination of analytical techniques. The different techniques were integrated to give complementary information on specific characteristics of the oligosaccharide mixture, ranging from global information on degree of polymerization (DP) to the identity and concentration of individual oligosaccharides. The coupling of high-performance anion-exchange chromatography (HPAEC) to mass spectrometry (MS) was determined to be especially suitable to assign the DP of individual oligosaccharides on the basis of their m/z values as well as their quantification using external standards. The combination of NMR spectroscopy and methylation analysis after isolation using size exclusion chromatography (SEC) and hydrophilic interaction liquid chromatography (HILIC) was used for identification. All DP2 compounds could be identified and quantified in this way as well as the main DP3 compounds.
Experimental Autoimmune Encephalomyelitis (EAE) is the most commonly used animal model for Multiple Sclerosis (MScl). CSF metabolomics in an acute EAE rat model was investigated using targetted LC–MS and GC–MS. Acute EAE in Lewis rats was induced by co-injection of Myelin Basic Protein with Complete Freund’s Adjuvant. CSF samples were collected at two time points: 10 days after inoculation, which was during the onset of the disease, and 14 days after inoculation, which was during the peak of the disease. The obtained metabolite profiles from the two time points of EAE development show profound differences between onset and the peak of the disease, suggesting significant changes in CNS metabolism over the course of MBP-induced neuroinflammation. Around the onset of EAE the metabolome profile shows significant decreases in arginine, alanine and branched amino acid levels, relative to controls. At the peak of the disease, significant increases in concentrations of multiple metabolites are observed, including glutamine, O-phosphoethanolamine, branched-chain amino acids and putrescine. Observed changes in metabolite levels suggest profound changes in CNS metabolism over the course of EAE. Affected pathways include nitric oxide synthesis, altered energy metabolism, polyamine synthesis and levels of endogenous antioxidants.Electronic supplementary materialThe online version of this article (doi:10.1007/s11306-011-0306-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.