Exponential sums have applications to a variety of scientific fields, including, but not limited to, cryptography, coding theory and information theory. Closed formulas for exponential sums of symmetric Boolean functions were found by Cai, Green and Thierauf in the late 1990's. Their closed formulas imply that these exponential sums are linear recursive. The linear recursivity of these sums has been exploited in numerous papers and has been used to compute the asymptotic behavior of such sequences. In this article, we extend the result of Cai, Green and Thierauf, that is, we find closed formulas for exponential sums of symmetric polynomials over any Galois fields. Our result also implies that the recursive nature of these sequences is not unique to the binary field, as they are also linear recursive over any finite field. In fact, we provide explicit linear recurrences with integer coefficients for such sequences. As a byproduct of our results, we discover a link between exponential sums of symmetric polynomials over Galois fields and a problem for multinomial coefficients which similar to the problem of bisecting binomial coefficients.
Rotation symmetric Boolean functions are invariant under circular translation of indices. These functions have very rich cryptographic properties and have been used in different cryptosystems. Recently, Thomas Cusick proved that exponential sums of rotation symmetric Boolean functions satisfy homogeneous linear recurrences with integer coefficients. In this work, a generalization of this result is proved over any Galois field. That is, exponential sums over Galois fields of rotation symmetric polynomials satisfy linear recurrences with integer coefficients. In the particular case of F 2 , an elementary method is used to obtain explicit recurrences for exponential sums of some of these functions. The concept of trapezoid Boolean function is also introduced and it is showed that the linear recurrences that exponential sums of trapezoid Boolean functions satisfy are the same as the ones satisfied by exponential sums of the corresponding rotations symmetric Boolean functions. Finally, it is proved that exponential sums of trapezoid and symmetric polynomials also satisfy linear recurrences with integer coefficients over any Galois field Fq. Moreover, the Discrete Fourier Transform matrix and some Complex Hadamard matrices appear as examples in some of our explicit formulas of these recurrences.
In this article we establish the asymptotic behavior of generating functions related to the exponential sum over finite fields of elementary symmetric functions and their perturbations. This asymptotic behavior allows us to calculate the probability generating function of the probability that the the elementary symmetric polynomial of degree k and its perturbations returns β ∈ Fq where Fq represents the field of q elements. Our study extends many of the results known for perturbations over the binary field to any finite field. In particular, we establish when a particular perturbation is asymptotically balanced over a prime field and provide a construction to find such perturbations over any finite field.In memory of Francis N. Castro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.