Compacted graphite iron (CGI), which is used as a potential material in the auto industry, is a hard-to-machine material for the different minor elements and for the geometry of graphite with grey cast iron. The machinability of CGI in the drilling process was investigated with a 4-mm diameter fine-grain carbide twist drill under four lubrication conditions, dry (no compressed air), dry (with compressed air), MQL 5 ml/h, and MQL 20 mL/h in this paper. The maximum flank wear, types of wear, and cutting loads were studied for identifying the wear mechanism in drilling of CGI. The tool life in the four experiments of CGI drilling is 639 holes, 2969 holes, 2948 holes, and 2685 holes, respectively. The results showed that the main wear mechanism in drilling of CGI is adhesion and abrasion. Carbon, which originates from the graphite of CGI, can improve the lubrication in the drilling process by comparing with MnS in drilling grey cast iron. The thrust force and torque are more than 1000 N and 150 N*cm after 2700 holes in CGI drilling. Drilling of CGI under dry conditions (with compressed air) and MQL 5 ml/h is feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.