Recently, we demonstrated a novel interaction between large-conductance (maxi-K or K(Ca)1.1) and intermediate-conductance (IK1 or K(Ca)3.1) Ca(2+)-activated K channels: activation of IK1 channels causes the inhibition of maxi-K activity (Thompson J and Begenisich T. J Gen Physiol 127: 159-169, 2006). Here we show that the interaction between these two channels can be regulated by the membrane cholesterol level in parotid acinar cells. Depletion of cholesterol using methyl-beta-cyclodextrin weakened, while cholesterol enrichment increased, the ability of IK1 activation to inhibit maxi-K channels. Cholesterol's stereoisomer, epicholesterol, was unable to substitute for cholesterol in the interaction between the two K channels, suggesting a specific cholesterol-protein interaction. This suggestion was strengthened by the results of experiments in which cholesterol was replaced by coprostanol and epicoprostanol. These two sterols have nearly identical effects on membrane physical properties and cholesterol-rich microdomain stability, but had very different effects on the IK1/maxi-K interaction. In addition, the IK1/maxi-K interaction was unaltered in cells lacking caveolin, the protein essential for formation and stability of caveolae. Finally, disruption of the actin cytoskeleton restored the IK1-induced maxi-K inhibition that was lost with cell cholesterol depletion, demonstrating the importance of an intact cytoskeleton for the cholesterol-dependent regulation of the IK1/maxi-K interaction.
Mitochondrial reactive oxygen species (ROS) generation and the attendant mitochondrial dysfunction are implicated in a range of disease states. The objective of the present studies was to test the hypothesis that the mitochondrial β-oxidation pathway could be exploited to deliver and biotransform the prodrugs ω-(phenoxy)alkanoic acids, 3-(phenoxy)acrylic acids, and ω-(1-methyl-1H-imidazol-2-ylthio)alkanoic acids to the corresponding phenolic antioxidants or methimazole. 3 -and 5-(Phenoxy)alkanoic acids and methyl-substituted analogs were biotransformed to phenols; rates of biotransformation decreased markedly with methyl-group substitution on the phenoxy moiety. 2,6-Dimethylphenol formation from the analogs 3-([2,6-dimethylphenoxy]methylthio)propanoic acid and 3-(2,6-dimethylphenoxy)acrylic acid was greater than that observed with ω-(2,6-dimethylphenoxy)alkanoic acids. 3-and 5-(1-Methyl-1H-imidazol-2-ylthio)alkanoic acids were rapidly biotransformed to the antioxidant methimazole and conferred significant cytoprotection against hypoxia-reoxygenation injury in isolated cardiomyocytes. Both 3-(2,6-dimethylphenoxy)propanoic acid and 3-(2,6-dimethylphenoxy)acrylic acid also afforded cytoprotection against hypoxia-reoxygenation injury in isolated cardiomyocytes. These results demonstrate that mitochondrial β-oxidation is a potentially useful delivery system for targeting antioxidants to mitochondria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.