The objective of the study was to optimize artemether-loaded nanostructured lipid carriers (ARM-NLC) for intranasal delivery using central composite design. ARM-NLC was prepared by microemulsion method with optimized formulation having particle size of 123.4 nm and zeta potential of À34.4 mV. Differential scanning calorimetry and powder X-ray diffraction studies confirmed that drug existed in amorphous form in NLC formulation. In vitro cytotoxicity assay using SVG p12 cell line and nasal histopathological studies on sheep nasal mucosa indicated the developed formulations were non-toxic and safe for intranasal administration.In vitro release studies revealed that NLC showed sustained release up to 96 h. Ex vivo diffusion studies using sheep nasal mucosa revealed that ARM-NLC had significantly lower flux compared to drug solution (ARM-SOL). Pharmacokinetic and brain uptake studies in Wistar rats showed significantly higher drug concentration in brain in animals treated intranasally (i.n.) with ARM-NLC. Brain to blood ratios for ARM-NLC (i.n.), ARM-SOL (i.n.) and ARM-SOL (i.v.) were 2.619, 1.642 and 0.260, respectively, at 0.5 h indicating direct nose to brain transport of ARM. ARM-NLC showed highest drug targeting efficiency and drug transport percentage of 278.16 and 64.02, respectively, which indicates NLC had better brain targeting efficiency compared to drug solution.
Alzheimer's disease (AD) is a chronic and progressive age-related irreversible neurodegenerative disorder that represents 70% of all dementia with 35 million cases worldwide. Successful treatment strategies for AD have so far been limited, and present therapy is based on cholinergic replacement therapy and inhibiting glutamate excitotoxicity. In this context, role of neuroprotective drugs has generated considerable interest in management of AD. Recently, direct intranasal (IN) delivery of drug moieties to the central nervous system (CNS) has emerged as a therapeutically viable alternative to oral and parenteral routes. IN delivery bypasses the blood-brain barrier by delivering and targeting drugs to the CNS along the olfactory and trigeminal neural pathways which are in direct contact with both the environment and the CNS. In an attempt to understand how neurotherapeutics/nanoparticulate delivery systems can be transported from the nose to the CNS, the present review sets out to discuss the mechanism of transport from nose to brain. The aim of this review is to discuss and summarize the latest findings of some of the major studies on IN drug delivery in AD models, with a focus on the potential efficacy of neuroprotective treatments.
Cerebral malaria is the most severe and rapidly fatal neurological complication of Plasmodium falciparum infection and responsible for more than two million deaths annually. The current therapy is inadequate in terms of reducing mortality or post-treatment symptoms such as neurological and cognitive deficits. The pathophysiology of cerebral malaria is quite complex and offers a variety of targets which remain to be exploited for better therapeutic outcome. The present review discusses on the pathophysiology of cerebral malaria with particular emphasis on scope and promises of curcumin as an adjunctive therapy to improve survival and overcome neurological deficits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.