Turboprop engines require an exhaust nozzle or stub to duct the engine exhaust flue gas outboard of the aircraft. The design of these exhaust stubs are dictated primarily by the aircraft’s configuration. In pusher aircraft, the exhaust stubs are designed to minimize the exposure of the flue gases from the engine exhaust on the propeller blades and fuselage. A fluid-thermal-structure coupling analysis is performed to understand the thermal effects of the engine exhaust jet flow on the thermo-mechanical behavior of pusher configured light transport aircraft propeller and structure. The steady thermal flow field of the aircraft with forward and reverse thrust, in which propeller blade angle variations were analyzed for different aircraft speed. The present work investigates a three-dimensional analysis of flow around the nacelle-airframe and the effect of exhaust flue gas impingement on the propeller blade surface. Based on the insights from the numerical results, the designed exhaust duct was integrated on the aircraft and carried out ground static and flight testing for various flight operating conditions in which propeller blade and fuselage surface temperature were measured. Numerical and experimental results are compared and validated for certain flight conditions and found satisfactory.
Turboprop engines are widely used in the commuter or light transport aircraft (LTA) turboprop engines, because they are more fuel efficient than the propeller, which has a low jet velocity, at flight velocities below 0.6 Mach. For short distances, turboprop engines are more fuel efficient than jet engines, because the light weight assures a high power output per unit of weight. In addition, turboprops are known for their efficiency at medium and low altitudes. Turboprop engines require an exhaust stub (or nozzle) to duct the engine exhaust flue gas outboard of the aircraft. The design of these exhaust stubs is dictated primarily by the aircraft configuration. During the exhaust stub design, full flow at bends and in diffusing sections must be realized by following the established practice for the design of internal flow ducts. Otherwise, the flow will separate from the wall, causing unnecessary pressure loss and reducing the effective flow area. This paper discusses some of the many variations in exhaust stub design, and examines how they influence the performance of the engine, the performance of the aircraft, and the manufacturing aspect. The authors carried out a detailed analysis on the influencing parameters, such as the location, orientation, flange dimension, and geometric effective area of exhaust port. On this basis, the authors determined the jet temperature at exhaust stub exit and temperature at exhaust stub exit plane and nacelle midsection were determined at both static and cruise condition, laying the data basis for further analysis on the exhaust temperature effects over the nacelle and aircraft surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.