The cloud storage service becomes a rising trend based on the cloud computing, which promotes the remote data integrity auditing a hot topic. Some research can audit the integrity and correctness of user data and solve the problem of user privacy leakage. However, these schemes cannot use fewer data blocks to achieve better auditing results. In this paper ,we figure out that the random sampling used in most auditing schemes is not well apply to the problem of cloud service provider (CSP) deleting the data that users rarely use, and we adopt the probability proportionate to size sampling (PPS) to handle such situation. A new scheme named improving audit efficiency of remote data for cloud storage is designed. The proposed scheme supports the public auditing with fewer data blocks and constrains the server's malicious behavior to extend the auditing cycle. Compared with the relevant schemes, the experimental results show that the proposed scheme is more effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.