The nucleus paracommissuralis (NPC) of teleosts is a relay nucleus of an indirect telencephalo-cerebellar pathway. However, cells of origin in telencephalic subdivisions and terminal patterns of the NPC fibers in the cerebellum remain unclear. We studied these issues by means of tract-tracing methods in a cichlid, tilapia (Oreochromis niloticus). After tracer injections into the NPC, retrogradely labeled cells were found bilaterally in dorsal and ventral regions of the area dorsalis telencephali pars centralis (dDc and vDc) and area dorsalis telencephali pars dorsalis (Dd). Anterogradely labeled terminals were found in a caudal part of the bilateral corpus cerebelli (CC). The labeled terminals were restricted in the granular layer, which can be divided into dorsal and ventral regions based on cytoarchitecture. We injected tracers separately into the three telencephalic portions (dDc, vDc, and Dd) and into the dorsal or ventral regions of granular layer in the caudal CC. The results revealed a topographical organization of the indirect telencephalo-cerebellar pathway. A medial portion of the NPC received fibers from the vDc and projected to the ventral region of the caudal CC. An intermediate portion of the NPC received fibers from the dDc and Dd, and in turn projected to the dorsal region of the caudal CC. A lateral portion of the NPC received fibers from the Dd and in turn projected to the dorsal region of the caudal CC. The Dc is known to receive visual input via the area dorsalis telencephali pars lateralis, and the Dd is presumably a multimodal telencephalic portion. The present study suggests that the indirect telencephalo-cerebellar pathway through the NPC might convey descending visual and multimodal information to the CC in a topographical manner. We also demonstrated other indirect telencephalo-cerebellar pathways through the nucleus lateralis valvulae and the area pretectalis.
Fiber connections of the lateral valvular nucleus were investigated in a percomorph teleost, the tilapia (Oreochromis niloticus), by tract-tracing methods. Following tracer injections into the lateral valvular nucleus, neurons were labeled in the ipsilateral dorsal part of dorsal telencephalic area, corpus glomerulosum pars anterior, dorsomedial thalamic nucleus, central nucleus of the inferior lobe, mammillary body, semicircular torus, valvular and cerebellar corpus, in the bilateral rostral regions of the central part of dorsal telencephalic area, dorsal region of the medial part of dorsal telencephalic area, habenula, anterior tuberal nucleus, posterior tuberal nucleus, and spinal cord, and in the contralateral lateral funicular nucleus. Labeled fibers and terminals were found in the ipsilateral cerebellar corpus and bilateral valvula of the cerebellum. Tracers were injected into portions of the telencephalon, pretectum, inferior lobe, and cerebellum to confirm reciprocally connections with the lateral valvular nucleus and to determine afferent terminal morphology in the lateral valvular nucleus. Telencephalic fibers terminated mainly in a dorsolateral portion of the lateral valvular nucleus. Terminals from the corpus glomerulosum pars anterior, central nucleus of the inferior lobe, and mammillary body showed more diffuse distributions and were not confined to particular portions of the lateral valvular nucleus. Labeled terminals in the lateral valvular nucleus were cup-shaped or of beaded morphology. These results indicate that the lateral valvular nucleus receives projections from various sources including the telencephalon, pretectum, and inferior lobe to relay information to the valvular and cerebellar corpus. In addition, the corpus glomerulosum pars anterior in tilapia is considered to be homologous to the magnocellular part of superficial pretectal nucleus in cyprinids.
Fiber connections of the torus longitudinalis (TL) and target(s) of toral recipient tectal neurons (pyramidal cells) in the optic tectum were examined by tract-tracing methods in holocentrids. Injections into the stratum marginale (SM) labeled neurons in the stratum opticum and stratum fibrosum et griseum superficiale (SFGS). They had superficial spiny dendrites, with a fan-shaped branching pattern in SM and a thick basal dendrite that gave rise to bushy horizontal branches at the boundary between the SFGS and the stratum griseum centrale (SGC), where an axon and a thin dendrite arose. The axon terminated in a middle cellular layer of the SGC, and the thin dendrite ramified slightly deeper to this cellular layer. The SM injections also labeled cells in the ipsilateral TL. Injections into either the lateral or the medial part of TL labeled terminals in the ipsilateral SM and neurons in the bilateral nucleus paracommissuralis (NPC) and nucleus subvalvularis and ipsilateral nucleus subeminentialis. Only medial TL injections labeled cells in the ipsilateral SGC. These neurons had a basal dendrite that branched in the middle cellular layer of SGC, suggesting that they receive inputs from the pyramidal cells and project back to the TL to form a closed circuit. Only lateral TL injections labeled terminals in the corpus cerebelli. A visual telencephalic portion projects to the NPC and sublayers of SGC, where dendrites of the pyramidal cells and SGC neurons ramify. The present results therefore suggest that the TL and SM are components of an intricate circuitry that exerts telencephalic descending visual influence on the optic tectum and corpus cerebelli.
The holocentrid corpus cerebelli (CC) is composed of the dorsal (CCd) and ventral (CCv) lobes. In the present study, afferent connections of the CCd and CCv in holocentrid teleosts (Sargocentron rubrum and S. diadema) were examined by means of tract-tracing methods. Tracer injections into either lobe of the CC labeled neurons in the ipsilateral area pretectalis pars anterior et posterior, nucleus paracommissuralis (NPC), nucleus accessorius opticus and nucleus tegmentocerebellaris. Labeled neurons were also present in the bilateral nucleus lateralis valvulae (NLV), nucleus raphes, nucleus reticularis lateralis and inferior reticular formation, and in the contralateral inferior olive. Injections into the CCd labeled only a few neurons in the area pretectalis pars anterior et posterior, nucleus accessorius opticus and nucleus tegmentocerebellaris, whereas many labeled cells were seen in these nuclei after CCv injections. Injections into the CCv also revealed afferent connections that were not observed after CCd injections. The CCv injections labeled additional neurons in the ipsilateral torus longitudinalis and nucleus subeminentialis and in the bilateral nucleus subvalvularis and nucleus of the commissure of Wallenberg. These differences in afferent connections suggest functional differences between the CCd and CCv. After injections into the CCd, labeled neurons in the NPC were restricted to a medial portion of the nucleus. On the other hand, after injections into the CCv, labeled neurons were found throughout the NPC. Labeled neurons in the NLV were mainly located in its rostral portion following CCd injections, whereas labeled neurons were mainly distributed in the medial portion following CCv injections. These observations suggest topographical organizations of the NPC-CC and NLV-CC projections.
The discomallear ligament (DML) runs through a narrow space of bony petrotympanic fissure, which joins the articular disc of the temporomandibular joint (TMJ) and the malleus in the tympanic cavity. Previous report suggest that an anatomical feature gives rise to TMJ pain and dysfunction. Recently, the movement of the malleus caused by hypertension on the discomallear ligament is important to the function of the TMJ. The purpose of this study is to define its morphological features using the cone beam CT (CBCT) and anatomical dissection of Japanese cadavers. Petrotympanic fissure and DML were observed in 14 cadavers (eight males and six females). It is revealed that a wide tunnel-like structure was found on CBCT images in the middle region of the petrotympanic fissure to the malleus in the tympanic cavity consisting of mainly three types: a wide tunnel-shaped structure (29.2%, 7/24, type 1), a tunnel-shaped structure widely open in the entrance of the petrotympanic fissure to the mandibular fossa and gradually thinning out in the tympanic cavity (20.8%, 5/24, type 2), and a tunnel-shaped structure widely open in the entrance of the mandibular fossa, middle region with flat-shaped tunnel structure and narrow exit in the tympanic cavity (41.7%, 10/24, type 3). These structures between the entrance of the petrotympanic fissure and the exit at the tympanic cavity are important to define the limited movement of the malleus. Therefore, morphological feature of the ligaments in malleus may relate to TMJ pain, dysfunction and hearing function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.