Background: To meet the requirements of sustainable growth for feeding the increasing population in a changing world, farmers and scientists have developed many eco-agricultural practices. Although researchers have developed many eco-agricultural techniques, there remain challenges in terms of integrating their advantages and overcoming their limitations. Here we advocate the intercropping of groundnut and blackgram with different crop ratios to study the production potential and economics of groundnut cum black-gram based intercropping system. Methods: The experiment was laid out in 2020-2021 with random block design consisting twelve treatments comprising of groundnut as base crop and blackgram as intercrop in the replacement series or crop ratios of 3:1, 3:2, 4:1, 4:2, 5:1, 5:2, 6:1, 6:2, 7:1, 7:2 row proportions and their sole crops viz., groundnut and blackgram. Each treatment is replicated thrice. Result: The productivity in terms of groundnut yield was significantly higher with 4:1 replacement series followed by 6:1 and 7:1 than other replacement series. The biological efficiency in terms of LER and ATER were also recorded maximum values and indicated a modest aggressivity and CR and gave a good value for the product of RCC with 4:1 followed by 6:1 and 7:1. The economics of the systems also indicates that groundnut + blackgram with replacement series of 4:1 was most profitable system in terms of gross return, net return, B:C ratio and MER followed by 6:1 and 7:1.
Although intercropping gives additional yield per unit area than sole cropping, yield may also decrease as the crops differ in their competitive abilities. To avoid competition and to accompany complimentary action between the base crop and inter crop in intercropping practise, proper crop ratio of two crops should be maintained. When sowing with available seeders crop ratio was not maintained because of non-availability of a seed hopper, handling two different varieties of seeds and the un controlled seed flow from the hopper to the seed tube when ground wheel is rotating. To look after this problem an experiment was conducted at DFMPE, AEC & RI, Tamil Nadu Agricultural University, Kumulur by fabricating a seed hopper consisting of two compartments and circular shaped outlet for two variety of seeds and developing an RF (radio frequency) wireless technology to control servo motor in order to restrict the seed drop from seed hopper to the seed tube even though ground wheel is in running condition. In this paper considering a seven-row seeder, the performance of a micro controller coded with appropriate programme in embedded C language which can regulate seven servo motors each at seven seed hoppers, functioning of RF transmitter sketch, functioning of RF receiver sketch, header issue & its solution, angle conversion of servo shaft and power consumption was observed and discussed. Total power required for operating RF electronic setup containing seven servomotors was recorded as 5 V 12 A. The angle of rotation of servo motor shaft was from 0º to 165º when pulse width range in micro controller was set from 0 and 2400 micro seconds. The servo did not respond in the hardware interfacing because both the libraries use timer 1 interrupt which created an error issue. In order to overcome that “Servo timer 2.h” header was issued instead of servo.h. Then sketch was compiled and was executed successfully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.