CD103(+)CD11b(+) dendritic cells (DCs) represent the major migratory DC population within the small intestinal lamina propria (SI-LP), but their in vivo function remains unclear. Here we demonstrate that intestinal CD103(+)CD11b(+) DC survival was dependent on interferon regulatory factor 4 (IRF4). Mice with a DC deletion in Irf4 displayed reduced numbers of intestinal interleukin 17 (IL-17)-secreting helper T 17 (Th17) cells and failed to support Th17 cell differentiation in draining mesenteric lymph nodes (MLN) following immunization. The latter was associated with a selective reduction in CD103(+)CD11b(+) MLN DCs and DC derived IL-6. Immunized Il6(-/-) mice failed to support Th17 cell differentiation in MLN in vivo and CD103(+)CD11b(+) MLN DCs supported IL-6-dependent Th17 cell differentiation in vitro. Together, our results suggest a central role for IRF4-dependent, IL-6 producing CD103(+)CD11b(+) DCs in intestinal Th17 cell differentiation.
The identification of intestinal macrophages (mφs) and dendritic cells (DCs) is a matter of intense debate. Although CD103+ mononuclear phagocytes (MPs) appear to be genuine DCs, the nature and origins of CD103− MPs remain controversial. We show here that intestinal CD103−CD11b+ MPs can be separated clearly into DCs and mφs based on phenotype, gene profile, and kinetics. CD64−CD103−CD11b+ MPs are classical DCs, being derived from Flt3 ligand-dependent, DC-committed precursors, not Ly6Chi monocytes. Surprisingly, a significant proportion of these CD103−CD11b+ DCs express CCR2 and there is a selective decrease in CD103−CD11b+ DCs in mice lacking this chemokine receptor. CCR2+CD103− DCs are present in both the murine and human intestine, drive interleukin (IL)-17a production by T cells in vitro, and show constitutive expression of IL-12/IL-23p40. These data highlight the heterogeneity of intestinal DCs and reveal a bona fide population of CCR2+ DCs that is involved in priming mucosal T helper type 17 (Th17) responses.
Small intestinal lamina propria (SI-LP) CD103+ dendritic cells (DCs) are imprinted with an ability to metabolize vitamin A (retinol), a property underlying their enhanced capacity to induce the gut-homing receptors CC chemokine receptor-9 and α4β7 on responding T cells. In this study, we demonstrate that imprinting of CD103+ DCs is itself critically dependent on vitamin A and occurs locally within the small intestine (SI). The major vitamin A metabolite retinoic acid (RA) induced retinol-metabolizing activity in DCs both in vitro and in vivo, suggesting a direct role for RA in this process. Consistent with this, SI-LP CD103+ DCs constitutively received RA signals in vivo at significantly higher levels than did colonic CD103+ DCs. Remarkably, SI CD103+ DCs remained imprinted in mice depleted of dietary but not of systemic retinol. We found that bile contained high levels of retinol, induced RA receptor-dependent retinol-metabolizing activity in bone marrow-derived DCs, and imprinted these cells with the ability to generate gut-tropic T cells. Taken together, these results suggest a novel and unexpected role for bile in SI-LP CD103+ DC imprinting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.