In periodic homogenization problems, one considers a sequence ( u η ) η {(u^{\eta})_{\eta}} of solutions to periodic problems and derives a homogenized equation for an effective quantity u ^ {\hat{u}} . In many applications, u ^ {\hat{u}} is the weak limit of ( u η ) η {(u^{\eta})_{\eta}} , but in some applications u ^ {\hat{u}} must be defined differently. In the homogenization of Maxwell’s equations in periodic media, the effective magnetic field is given by the geometric average of the two-scale limit. The notion of a geometric average has been introduced in [G. Bouchitté, C. Bourel and D. Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Math. Acad. Sci. Paris 347 2009, 9–10, 571–576]; it associates to a curl-free field Y ∖ Σ ¯ → ℝ 3 {Y\setminus\overline{\Sigma}\to\mathbb{R}^{3}} , where Y is the periodicity cell and Σ an inclusion, a vector in ℝ 3 {\mathbb{R}^{3}} . In this article, we extend previous definitions to more general inclusions, in particular inclusions that are not compactly supported in the periodicity cell. The physical relevance of the geometric average is demonstrated by various results, e.g., a continuity property of limits of tangential traces.
Data‐driven schemes introduced a new perspective in elasticity: While certain physical principles are regarded as invariable, material models for the relation between strain and stress are replaced by data clouds of admissible pairs of these variables. A data‐driven approach is of particular interest for plasticity problems, since the material modeling is even more unclear in this field. Unfortunately, so far, data‐driven approaches to evolutionary problems are much less understood. We try to contribute in this area and propose an evolutionary data‐driven scheme. We present a first analysis of the scheme regarding existence and data convergence. Encouraging numerical tests are also included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.