Hexagonal boron nitride (h‐BN) and exfoliated nanosheets (BNNs) not only resemble their carbon counterparts graphite and graphene nanosheets in structural configurations and many excellent materials characteristics, especially the ultra‐high thermal conductivity, but also offer other unique properties such as being electrically insulating and extreme chemical stability and oxidation resistance even at elevated temperatures. In fact, BNNs as a special class of 2‐D nanomaterials have been widely pursued for technological applications that are beyond the reach of their carbon counterparts. Highlighted in this article are significant recent advances in the development of more effective and efficient exfoliation techniques for high‐quality BNNs, the understanding of their characteristic properties, and the use of BNNs in polymeric nanocomposites for thermally conductive yet electrically insulating materials and systems. Major challenges and opportunities for further advances in the relevant research field are also discussed.
Carbon dots are defined as small carbon nanoparticles with effective surface passivation via organic functionalization. The definition is literally a description of what carbon dots are originally found for the functionalized carbon nanoparticles displaying bright and colorful fluorescence emissions, mirroring those from similarly functionalized defects in carbon nanotubes. In literature more popular than classical carbon dots are the diverse variety of dot samples from “one‐pot” carbonization of organic precursors. On the two different kinds of samples from the different synthetic approaches, namely, the classical carbon dots versus those from the carbonization method, highlighted in this article are their shared properties and apparent divergences, including also explorations of the relevant sample structural and mechanistic origins for the shared properties and divergences. Echoing the growing evidence and concerns in the carbon dots research community on the major presence of organic molecular dyes/chromophores in carbonization produced dot samples, demonstrated and discussed in this article are some representative cases of dominating spectroscopic interferences due to the organic dye contamination that have led to unfound claims and erroneous conclusions. Mitigation strategies to address the contamination issues, including especially the use of more vigorous processing conditions in the carbonization synthesis, are proposed and justified.
The carbon/TiO2 hybrid dots (C/TiO2-Dots) are structurally TiO2 nanoparticles (in the order of 25 nm in diameter from commercially available colloidal TiO2 samples) surface-attached by nanoscale carbon domains with organic moieties, thus equivalent to hybrids of individual TiO2 nanoparticles each decorated with many carbon dots. These hybrid dots with exposure to visible light exhibit potent antibacterial properties, similar to those found in neat carbon dots with the same light activation. The results from the use of established scavengers for reactive oxygen species (ROS) to “quench” the antibacterial activities, an indication for shared mechanistic origins, are also similar. The findings in experiments on probing biological consequences of the antibacterial action suggest that the visible light-activated C/TiO2-Dots cause significant damage to the bacterial cell membrane, resulting in higher permeability, with the associated oxidative stress leading to lipid peroxidation, inhibiting bacterial growth. The induced bacterial cell damage could be observed more directly in the transmission electron microscopy (TEM) imaging. Opportunities for the further development of the hybrid dots platform for a variety of antibacterial applications are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.