As a component of Earth’s hydrologic cycle, and especially at higher latitudes, falling snow creates snowpack accumulation that in turn provides a large proportion of the freshwater resources required by many communities throughout the world. To assess the relationships between remotely sensed snow measurements with in situ measurements, a winter field project, termed the Global Precipitation Measurement (GPM) Cold Season Precipitation Experiment (GCPEx), was carried out in the winter of 2011/12 in Ontario, Canada. Its goal was to provide information on the precipitation microphysics and processes associated with cold season precipitation to support GPM snowfall retrieval algorithms that make use of a dual-frequency precipitation radar and a passive microwave imager on board the GPM core satellite and radiometers on constellation member satellites. Multiparameter methods are required to be able to relate changes in the microphysical character of the snow to measureable parameters from which precipitation detection and estimation can be based. The data collection strategy was coordinated, stacked, high-altitude, and in situ cloud aircraft missions with three research aircraft sampling within a broader surface network of five ground sites that in turn were taking in situ and volumetric observations. During the field campaign 25 events were identified and classified according to their varied precipitation type, synoptic context, and precipitation amount. Herein, the GCPEx field campaign is described and three illustrative cases detailed.
Flash flooding is a high impact weather event that requires clear communication regarding severity and potential hazards among forecasters, researchers, emergency managers, and the general public. Current standards used to communicate these characteristics include return periods and the United States (U.S.) National Weather Service (NWS) 4-tiered river flooding severity scale. Return periods are largely misunderstood, and the NWS scale is limited to flooding on gauged streams and rivers, often leaving out heavily populated urban corridors. To address these shortcomings, a student-led group of interdisciplinary researchers came together in a collaborative effort to develop an impact-based Flash Flood Severity Index (FFSI). The index was proposed as a damage-based, post-event assessment tool, and preliminary work toward the creation of this index has been completed and presented here. Numerous case studies were analyzed to develop the preliminary outline for the FFSI, and three examples of such cases are included in this paper. The scale includes five impact-based categories ranging from Category 1 very minor flooding to Category 5 catastrophic flooding. Along with the numerous case studies used to develop the initial outline of the scale, empirical data in the form of semi-structured interviews were conducted with multiple NWS forecasters across the country and their responses were analyzed to gain more perspective on the complicated nature of flash flood definitions and which tools were found to be most useful. The feedback from these interviews suggests the potential for acceptance of such an index if it can account for specific challenges.
Non-communicable diseases (NCDs), which include cardiovascular disease, cancer, and diabetes, all of which are associated with the common risk factors of poor diet and insufficient physical activity, caused 63% of all deaths globally in 2008. The increasing discussion of global NCDs, including at the 2011 United Nations General Assembly High-level Meeting on the Prevention and Control of Non-communicable Diseases, and a request for multi-stakeholder engagement, prompted the International Food Information Council Foundation to sponsor the Global Diet and Physical Activity Communications Summit: “Insights to Motivate Healthful, Active Lifestyles” on September 19, 2011, in New York City. The Summit brought together a diverse group of stakeholders, representing 34 nations from governments; communication, health, nutrition, and fitness professions; civil society; nonprofits; academia; and the private sector. The Summit provided expert insights and best practices for the use of science-based, behavior-focused communications to motivate individuals to achieve healthful, active lifestyles, with the goal of reducing the prevalence of NCDs. Presented here are some of the highlights and key findings from the Summit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.