Under iron stress, Legionella pneumophila secretes legiobactin, a nonclassical siderophore that is reactive in the chrome azurol S (CAS) assay. Here, we have optimized conditions for legiobactin expression, shown its biological activity, and identified two genes, lbtA and lbtB, which are involved in legiobactin production. lbtA appears to be iron repressed and encodes a protein that has significant homology with siderophore synthetases, and FrgA, a previously described iron-regulated protein of L. pneumophila. lbtB encodes a protein homologous with members of the major facilitator superfamily of multidrug efflux pumps. Mutants lacking lbtA or lbtB were defective for legiobactin, producing 40 to 70% less CAS reactivity in deferrated chemically defined medium (CDM). In bioassays, mutant CDM culture supernatants, unlike those of the wild type, did not support growth of iron-limited wild-type bacteria in 2,2-dipyridyl-containing buffered charcoal yeast extract (BCYE) agar and a ferrous iron transport mutant on BCYE agar without added iron. The lbtA mutant was modestly defective for growth in deferrated CDM containing the iron chelator citrate, indicating that legiobactin is required in conditions of severe iron limitation. Complementation of the lbt mutants restored both siderophore expression, as measured by the CAS assay and bioassays, and bacterial growth in deferrated, citrate-containing media. The lbtA mutant replicated as the wild type did in macrophages, amoebae, and the lungs of mice. However, L. pneumophila expresses lbtA in the macrophage, suggesting that legiobactin, though not required, may play a dispensable role in intracellular growth. The discovery of lbtAB represents the first identification of genes required for L. pneumophila siderophore expression.
When cultured in a low-iron medium, Legionella pneumophila secretes a siderophore (legiobactin) that is both reactive in the chrome azurol S (CAS) assay and capable of stimulating the growth of iron-starved legionellae. Using anion-exchange high-pressure liquid chromatography (HPLC), we purified legiobactin from culture supernatants of a virulent strain of L. pneumophila. In the process, we detected the ferrated form of legiobactin as well as other CAS-reactive substances. Purified legiobactin had a yellow-gold color and absorbed primarily from 220 nm and below. In accordance, nuclear magnetic resonance spectroscopy revealed that legiobactin lacks aromatic carbons, and among the 13 aliphatics present, there were 3 carbonyls. When examined by HPLC, supernatants from L. pneumophila mutants inactivated for lbtA and lbtB completely lacked legiobactin, indicating that the LbtA and LbtB proteins are absolutely required for siderophore activity. Independently derived lbtA mutants, but not a complemented derivative, displayed a reduced ability to infect the lungs of A/J mice after intratracheal inoculation, indicating that legiobactin is required for optimal intrapulmonary survival by L. pneumophila. This defect, however, was not evident when the lbtA mutant and its parental strain were coinoculated into the lung, indicating that legiobactin secreted by the wild type can promote growth of the mutant in trans. Legiobactin mutants grew normally in murine lung macrophages and alveolar epithelial cells, suggesting that legiobactin promotes something other than intracellular infection of resident lung cells. Overall, these data represent the first documentation of a role for siderophore expression in the virulence of L. pneumophila.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.