The purpose of this study was to examine the effects of lifelong aerobic exercise (LLE) on VOmax and skeletal muscle metabolic fitness in trained females (n=7, 72±2y) and males (n=21, 74±1y), and compare them to old healthy non-exercisers (OH; females: n=10, 75±1y; males: n=10, 75±1y), and young exercisers (YE; females: n=10, 25±1y; males: n=10, 25±1y). LLE males were further subdivided based on intensity of lifelong exercise and competitive status into performance (LLE-P, n=14) and fitness (LLE-F, n=7). On average, LLE exercised 5d/wk for 7h/wk over the past 52±1y. Each subject performed a maximal cycle test to assess VOmax and had a vastus lateralis muscle biopsy to examine capillarization and metabolic enzymes (citrate synthase, β-HAD, and glycogen phosphorylase). VOmax had a hierarchical pattern (YE>LLE>OH, P<0.05) for females (44±2>26±2>18±1 ml•kg•min) and males (53±3>34±1>22±1 ml•kg•min), and was greater (P<0.05) in LLE-P (38±1 ml•kg•min) than LLE-F (27±2 ml•kg•min). LLE males, regardless of intensity, and females had similar capillarization and aerobic enzyme activity (citrate synthase and β-HAD) as YE, which were 20-90% greater (P<0.05) than OH. In summary, these data show a substantial VOmax benefit with LLE that tracked similarly between the sexes, with further enhancement in performance trained males. For skeletal muscle, 50+ years of aerobic exercise fully preserved capillarization and aerobic enzymes, regardless of intensity. These data suggest that skeletal muscle metabolic fitness may easier to maintain with lifelong aerobic exercise than more central aspects of the cardiovascular system.
Obesity is accompanied by numerous systemic and tissue-specific derangements, including systemic inflammation, insulin resistance, and mitochondrial abnormalities in skeletal muscle. Despite growing recognition that adipose tissue dysfunction plays a role in obesity-related disorders, the relationship between adipose tissue inflammation and other pathological features of obesity is not well-understood. We assessed macrophage populations and measured the expression of inflammatory cytokines in abdominal adipose tissue biopsies in 39 non-diabetic adults across a range of body mass indexes (BMI 20.5-45.8 kg/m2). Skeletal muscle biopsies were used to evaluate mitochondrial respiratory capacity, ATP production capacity, coupling, and reactive oxygen species production. Insulin sensitivity (SI) and beta cell responsivity were determined from test meal postprandial glucose, insulin, c-peptide, and triglyceride kinetics. We examined the relationships between adipose tissue inflammatory markers, systemic inflammatory markers, SI, and skeletal muscle mitochondrial physiology. BMI was associated with increased adipose tissue and systemic inflammation, reduced SI, and reduced skeletal muscle mitochondrial oxidative capacity. Adipose-resident macrophage numbers were positively associated with circulating inflammatory markers, including tumor necrosis factor-α (TNFα) and C-reactive protein (CRP). Local adipose tissue inflammation and circulating concentrations of TNFα and CRP were negatively associated with SI, and circulating concentrations of TNFα and CRP were also negatively associated with skeletal muscle oxidative capacity. These results demonstrate that obese humans exhibit increased adipose tissue inflammation concurrently with increased systemic inflammation, reduced insulin sensitivity, and reduced muscle oxidative capacity, and suggest that adipose tissue and systemic inflammation may drive obesity-associated metabolic derangements.
support-information-section). Key pointsr A hallmark trait of ageing skeletal muscle health is a reduction in size and function, which is most pronounced in the fast muscle fibres.r We studied older men (74 ± 4 years) with a history of lifelong (>50 years) endurance exercise to examine potential benefits for slow and fast muscle fibre size and contractile function.r Lifelong endurance exercisers had slow muscle fibres that were larger, stronger, faster and more powerful than young exercisers (25 ± 1 years) and age-matched non-exercisers (75 ± 2 years).r Limited benefits with lifelong endurance exercise were noted in the fast muscle fibres. r These findings suggest that additional exercise modalities (e.g. resistance exercise) or other therapeutic interventions are needed to target fast muscle fibres with age.
The purpose of this study was to examine the effects of lifelong aerobic exercise on single-muscle fiber performance in trained women (LLE; n = 7, 72 ± 2 yr) by comparing them to old healthy nonexercisers (OH; n = 10, 75 ± 1 yr) and young exercisers (YE; n = 10, 25 ± 1 yr). On average, LLE had exercised ~5 days/wk for ~7 h/wk over the past 48 ± 2 yr. Each subject had a vastus lateralis muscle biopsy to examine myosin heavy chain (MHC) I and IIa single-muscle fiber size and function (strength, speed, power). MHC I fiber size was similar across all three cohorts (YE = 5,178 ± 157, LLE = 4,983 ± 184, OH = 4,902 ± 159 µm2). MHC IIa fiber size decreased ( P < 0.05) 36% with aging (YE = 4,719 ± 164 vs. OH = 3,031 ± 153 µm2), with LLE showing a similar 31% reduction (3,253 ± 189 µm2). LLE had 17% more powerful ( P < 0.05) MHC I fibers and offset the 18% decline in MHC IIa fiber power observed with aging ( P < 0.05). The LLE contractile power was driven by greater strength (+11%, P = 0.056) in MHC I fibers and elevated contractile speed (+12%, P < 0.05) in MHC IIa fibers. These data indicate that lifelong exercise did not benefit MHC I or IIa muscle fiber size. However, LLE had contractile function adaptations that enhanced MHC I fiber power and preserved MHC IIa fiber power through different contractile mechanisms (strength vs. speed). The single-muscle fiber contractile properties observed with lifelong aerobic exercise are unique and provide new insights into aging skeletal muscle plasticity in women at the myocellular level. NEW & NOTEWORTHY This is the first investigation to examine the effects of lifelong exercise on single-muscle fiber physiology in women. Nearly 50 yr of moderate to vigorous aerobic exercise training resulted in enhanced slow-twitch fiber power primarily by increasing force production, whereas fast-twitch fiber power was preserved primarily by increasing contractile speed. These unique muscle fiber power profiles helped offset the effects of fast-twitch fiber atrophy and highlight the benefits of lifelong aerobic exercise for myocellular health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.