In order to reduce the vibrational level of lightweight composite structures, active vibration control methods have been applied both numerically and experimentally. Using the classical laminated beam theory and Ritz method, an analytical model of the laminated composite beam with piezoelectric sensors and actuators has been developed. Smart composite beams and plates with surface-bonded piezoelectric sensors and actuators were manufactured and tested. It is found that the developed analytical model predicts the dynamic characteristics of smart composite plates very well. Utilizing a linear quadratic Gaussian (LQG) control algorithm as well as well known classical control methods, a feedback control system was designed and implemented. A personal computer (PC) was used as a controller with an analogue-digital conversion card. For a cantilevered beam the first and second bending modes are successfully controlled, and for cantilevered plates the simultaneous control of the bending and twisting modes gives a significant reduction in the vibration level. LQG has shown advantages in robustness to noise and control efficiency compared with classical control methods. In this study examples of control spillover are demonstrated via the instantaneous power spectrum of the sensor output.
An adaptive controller, Adaptive Positive Position Feedback (APPF) is proposed for the multi-modal vibration control of frequency varying structures. Spillover phenomena and real-time system identification have been obviously difficult obstacles for the multi-modal adaptive vibration control. To overcome these problems, a fast and powerful algorithm is proposed to identify the frequencies of time-varying structures. Variable PPF controllers are adjusted with estimated natural frequencies at every time step. A composite plate with a bonded piezoelectric sensor and an actuator was prepared as an experimental model, and the natural frequencies of the model are changed by attaching masses. The experimental results show that natural frequencies are estimated quite accurately and that the vibration of controlled modes is significantly reduced. No significant performance reduction has been observed with respect to approximately 10% frequency changes of the corresponding modes. On the contrary, the performance of the conventional LQG controller is significantly degraded due to frequency variations.
Placenta extracts are used for their health benefits; however, the anti-fatigue effects of placenta have not been elucidated. Thus, we investigated the anti-fatigue effects of porcine placenta extract (PE) and the amino acids present in the PE (glycine, Gly; proline, Pro; glutamic acid, GA; and arginine, Arg) using a forced swimming test (FST) and a tail-suspension test (TST) on mice. Whole PE or individual amino acids decreased immobility times in the FST. PE, Pro, and Arg all lowered blood levels of lactic acid and alanine aminotransferase (ALT). PE and Gly improved glycogen content and catalase activity. As determined from the serum after the FST: PE regulated the effects of interferon (IFN)-γ and tumor necrosis factor (TNF)-α; GA regulated the effects of IFN-γ; Gly and Arg regulated the effects of interleukin (IL)-6; and all of the amino acids present in PE regulated the effects of TNF-α. As determined from the spleen after the FST: Gly and Arg regulated the effects of IL-1β; Gly, Pro, and Arg regulated the effects of IL-6; PE and all of the amino acids present in PE regulated the effects of TNF-α. After the TST, PE and all of the amino acids present in PE reduced immobility duration as well as levels of aspartate aminotransferase and ALT. As determined from the serum after the TST: PE and Gly regulated the effects of TNF-α; Gly and Arg regulated the effects of IL-1β; Gly, Pro, and Arg regulated the effects of IL-6; PE and all of the amino acids present in PE regulated the effects of TNF-α. These results suggest that PE should be considered a candidate anti-fatigue agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.