An automobile brake disc brought into contact with the pads, mechanical stresses are imposed on the contact surface. These stresses can cause degradation by fatigue, rupture, wear, propagation of cracks. Modeling the numerical results makes it possible to recognize this damage in order to improve the braking system, extend its service life, reduce the cost of maintenance and make it more reliable. The aim of our study concerns modeling and numerical simulation using ANSYS 14.5 software based on the finite element method under the influence of certain essential parameters on the braking behavior of the torque as a function of geometric parameters, properties mechanical, boundary conditions, type of loading applied, type of materials chosen and type of analysis carried out in braking torques (ventilated drilled disc / pads and ventilated grooved disc / pads), upon contact with a disc in rotation with a plate which represents the friction body on the disc. The behavior of the torque during braking was analyzed in terms of stresses and deformations, and displacements, the comparison between the two types of discs was also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.