Response time of the post-shock wave (SW) overpressure modulation by turbulence is investigated in wind tunnel experiments. A peak-overpressure fluctuation, observed on a wall, is induced by turbulence around the SW ray, but away from the wall, demonstrating finite response time of the modulation. We propose a model of the modulation based on the SW deformation by a local flow disturbance, which yields the response time being proportional to the product of the large-eddy turnover time and (MT/MS0)0.5 (MT: turbulent Mach number and MS0: shock Mach number), in consistent with the experiments.
The overpressure fluctuations behind a weak shock wave interacting with turbulence are studied by wind tunnel experiments, where a spherical shock wave propagates in grid turbulence. The experiments are conducted for various values of the shock Mach number MS0 of the shock wave and turbulent Mach number MT of the grid turbulence. The experimental results show that the root-mean-squared peak-overpressure fluctuation divided by the averaged peak-overpressure, σΔp/⟨Δp⟩, where the inherent noise caused by the experimental facility is removed, follows a power law of MT2/(MS02−1). The probability density functions of the overpressure fluctuations are close to the Gaussian profile for a wide range of MT2/(MS02−1). A shock deformation model based on the deformation due to nonuniform fluid velocity is proposed for the investigation of the influences of turbulence on the shock wave. The deformation changes the cross-sectional area of the ray tube, which is related to the shock Mach number fluctuation of the area. The model for a weak shock wave yields the relation σΔp/⟨Δp⟩≈(1/3)[MT2/(MS02−1)]1/2, which agrees well with the experimental results. The model also predicts the Gaussianity of the peak-overpressure fluctuations behind the shock wave interacting with Gaussian velocity fluctuations. Good agreements between the model and experiments imply that the change in the shock wave characteristics by the interaction with turbulence is closely related to the shock wave deformation caused by the fluctuating turbulent velocity field.
Wind tunnel experiments are reported for a spherical shock wave propagating through turbulent wakes of a single cylinder, double cylinders, grid-turbulence, and a laminar flow, whose influences on the shock wave are compared. Overpressure behind the shock wave is measured on a plate while streamwise velocity is measured at the flow point between the measurement plate and the location of the shock wave ejection. Average of peak-overpressure observed upon arrival of the shock wave is decreased by the mean velocity defect of the cylinder wake. Root mean squared (rms) peak-overpressure fluctuation divided by the averaged peak-overpressure is increased by turbulence, and it becomes larger with the rms velocity fluctuation. Correlation coefficients are calculated between fluctuations of peak-overpressure and low-pass filtered fluid velocity. The strong positive correlation is found for the fluid at the location where the shock ray toward the pressure measurement point passes. The length scale of velocity fluctuation with the strong correlation is related to the integral length scale of turbulence. In the double-cylinder wake experiments, the shock wave that has passed one cylinder wake interacts again with another cylinder wake before it reaches the measurement plate. The correlation coefficient for the velocity fluctuation of the first wake is weakened by the second wake, and this influence becomes more important when the rms velocity fluctuation of the second wake is larger.
Interactions between a spherical shock wave and a turbulent cylinder wake are studied with wind tunnel experiments. The shock wave is generated outside the wake and propagates across the turbulent wake. Instantaneous streamwise velocity is measured on the wake centerline while peak overpressure of the shock wave is measured outside the wake after the shock wave has passed across the wake. The experiments are performed for various conditions of the cylinder wake to investigate the influences of the root-mean-squared (rms) velocity fluctuation and of the length of the turbulent region through which the shock wave propagates. The velocity fluctuation opposite to the shock propagation direction is positively correlated with the peak-overpressure fluctuation. The mean peak overpressure decreases after the shock wave propagates in the wake. These relations between velocity and peak overpressure are explained by the shock-surface deformation, where the peak overpressure is increased and decreased, respectively, for the shock surfaces with concave and convex shapes in relation to the shock propagation direction. The correlation coefficients between the velocity and peak-overpressure fluctuations and the rms peak-overpressure fluctuation increase with the rms velocity fluctuation. The rms peak-overpressure fluctuation becomes independent of the turbulent length on the shock ray once the shock wave has propagated through a sufficiently long turbulent region. The peak-overpressure fluctuation has a probability density function (PDF) close to a Gaussian shape even though the PDF of velocity fluctuations in the wake is negatively skewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.