. This study found that the implantation of CTX0E03 human neural stem cells in rats after MCAO stroke promoted significant behavioral recovery depending on cell dose. The authors propose a paracrine trophic mechanism, which is triggered early after CTX0E03 cell implantation, and which in turn targets restoration of neurogenesis in the SVZ of MCAO rats.
The increase in eosinophils at the site of antigen challenge has been used as evidence to suggest that this cell type plays a role in the pathophysiology of asthma. Aberrant production of several different cytokines, particularly interleukin (IL)-5, has been shown to result in eosinophilia. IL-5 influences the development and maturation of eosinophils in a number of different ways. Of note is the ability of IL-5 to act as a survival factor for eosinophils specifically inhibiting apoptosis. The precise mechanism by which IL-5 exerts its effect remains obscure. We used microarray technologies to investigate the changes in the messenger RNA expression profile of eosinophils after treatment with IL-5. Using the Affymetrix Hu6800 chip, a total of 80 genes were observed to be regulated by 2-fold or greater. Many of the genes previously identified as regulated by IL-5 were regulated in our microarray experiments. Of the 73 genes found to be upregulated, many were shown to play a role in adhesion, migration, activation, or survival of eosinophils or hematopoietic cells, whereas the function of others was unknown. To facilitate the identification of genes that govern the apoptosis and survivability of eosinophils, we used an alternative cellular model, TF1.8 cells, whose survival was also dependent on IL-5. Comparison of these models identified four genes, Pim-1, DSP-5 (hVH3, B23), CD24, and SLP-76, whose regulation was similarly coordinated in both systems. Identification of Pim-1 and SLP-76 as regulated by IL-5 led us to suggest a direct role for these proteins in the IL-5 signaling pathway in eosinophils. The tissue distribution of these genes demonstrated that Pim-1 and SLP-76 were relatively restricted to the eosinophil compared with their expression in brain, bone marrow, kidney, liver, and lung. By contrast, DSP-5 and CD24 were confirmed as ubiquitous in their expression by microarray.
The effects of changes in the mean and amplitude of arterial wall shear stress on endothelium‐dependent arterial dilatation of the iliac artery of the anaesthetized dog were examined.
Changes in the mean and amplitude of blood flow and wall shear stress were brought about by varying local peripheral resistance and stroke volume using a distal infusion of acetylcholine and the stimulation of the left ansa subclavia. Changes in the diameter of a segment of the iliac artery with the endothelium intact, relative to a segment with no endothelium, were used as an index of the release of nitric oxide.
The increase in mean blood flow was from 84 ± 12 to 527 ± 53 ml min−1 and in amplitude was from 365 ± 18 to 695 ± 38 ml min−1 (means ±s.e.m.). The increase in mean wall shear stress was from 1.78 ± 0.30 to 7.66 ± 1.01 N m−2 and in amplitude was from 7.37 ± 0.46 to 13.9 ± 2.00 N m−2 (means ±s.e.m.).
Increases in mean shear stress caused an increase in the diameter only of the section of artery with endothelium; the slope of the relationship was 0.064 ± 0.006 mm N−1 m2 (mean ±s.e.m., P < 0.001); changes in the amplitude of shear stress did not cause an increase in diameter. Changes in both the mean and amplitude of shear stress had no significant effect on the diameter of the section of artery with no endothelium.
These findings coupled with the known anti‐atheroma effects of nitric oxide and the effect of shear stress on cell adhesion and platelet aggregation offer a possible explanation for the disposition of atheroma in those parts of the arterial system which have low mean and high amplitude of wall shear stress.
Summary The effect of cryotherapy on normal striated muscle was investigated using 18 adult male rats. Animals were divided into two groups, an experimental cryotherapy group and a control group receiving sham treatment. After the surgical procedure animals were allowed to equilibrate and vessel diameters, macromolecular leakage and blood flow were assessed before the cremaster muscle was frozen to -60°C. After thawing measurements were taken every 15 min over a 2 h period. Cryotherapy resulted in an initial reduction in blood flow followed by a brief period of reperfusion, with complete vascular stasis eventually observed. Macromolecular leakage occurred from all vessels, which mirrored the fluctuations in blood flow. Transient changes in vessel diameters were also observed. Histology confirmed the in vivo observations of vessel congestion and muscle damage. The data suggest that cessation of flow and increased macromolecular leakage within the muscle may contribute to the cell death and tumour necrosis observed following cryotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.