We report in situ synthesis of the first CF(3) oxonium salts, thermally unstable O-(trifluoromethyl)dibenzofuranium salts, which furthermore have different counteranions (BF(4)-, PF(6)-, SbF(6)-, and Sb(2)F(11)-) and ring substituents (tert-butyl, F, and OCH(3)), by photochemical decomposition of the corresponding 2-(trifluoromethoxy)biphenylyl-2'-diazonium salts at -90 to -100 degrees C. The yields markedly increased in the order of BF(4)- < PF(6)- < SbF(6)- < Sb(2)F(11)-. The CF(3) oxonium salts were fully assigned by means of (1)H and (19)F NMR spectroscopy at low temperature. The CF(3) salts decomposed to form CF(4) and dibenzofurans. The half-life times at -60 degrees C of the 2-tert-butyl salts having different counteranions were 29 min for BF(4)- salt 2d, 36 min for PF(6)- salt 2c, 270 min for SbF(6)- salt 2a, and 415 min for Sb(2)F(11)- salt 2b. Those at -60 degrees C of the Sb(2)F(11)- salts having different 2-substituents were 13 min for F salt 3b, 63 min for H (unsubstituted) salt 1b, and 415 min for tert-butyl salt 2b. Thus, the stability of the CF(3) oxonium salts increased in the order of BF(4)- < PF(6)- < SbF(6)- < Sb(2)F(11)- and F < H < tert-butyl, which is in accord with the increasing orders of the non-nucleophilicity of counteranions and the electron-donating effect of ring substituents. 2-tert-Butyl-O-(trifluoromethyl)dibenzofuranium hexafluoroantimonate (2a) was thus chosen and successfully applied as a real CF(3)+ species source to the direct O- and N-trifluoromethylations of alcohols, phenols, amines, anilines, and pyridines under very mild conditions. The thermal decomposition method with a mixture of diazonium salt 17a and aryl- or alkylsulfonic acids, pyridine, or pyridines having an electron-withdrawing group also afforded CF(3)O or CF(3)N products. The trifluoromethylation mechanism is discussed and an S(N)2 mechanism containing the transient formation of free CF(3)+ is proposed. Thus, the present study has demonstrated that the exceedingly reactive CF(3)+ species can be generated much easier than the CH(3)+ species, contrary to the common sense that CF(3)+ is extremely difficult to generate in solution.
Homogeneous dispersions of reduced tungsten oxide and tungsten bronze nanoparticles with ternary additives Na, Tl, Rb, and Cs have been prepared in the wet process and examined for optical properties. The dispersions of reduced tungsten oxide and tungsten bronze nanoparticles are found to show a remarkable absorption of near infrared light while retaining a high transmittance of visible light. This property is highly suitable for solar control filters in automotive and architectural windows.
Nanosize homogenous rod-like tungsten bronze Cs x WO 3 with excellent NIR shielding ability was successfully synthesized by a novel and facile water controlled-release solvothermal process (WCRSP).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.