Most agronomic traits of rice (Oryza sativa), such as grain length, are complex traits controlled by multiple genes. Chromosome segment substitution lines (CSSLs) are ideal materials for dissecting these complex traits. We developed the novel rice CSSL ‘Z414’, which has short, wide grains, from progeny of the recipient parent ‘Xihui 18’ (an indica restorer line) and the donor parent ‘Huhan 3’ (a japonica cultivar). Z414 contains four substitution segments with an average length of 3.04 Mb. Z414 displays seven traits that significantly differ from those of Xihui 18, including differences in grain length, width, and weight; degree of chalkiness; and brown rice rate. We identified seven quantitative trait loci (QTL) that are responsible for these differences in an F2 population from a cross between Xihui 18 and Z414. Among these, six QTL (qPL3, qGW5, qGL11, qRLW5, qRLW11, and qGWT5) were detected in newly developed single-segment substitution lines (SSSLs) S1–S6. In addition, four QTL (qGL3, qGL5, qCD3, and qCD5) were detected in S1 and S5. Analysis of these SSSLs attributed the short, wide grain trait of Z414 to qGL11, qGL3, qGL5, and qGW5. Substitution mapping delimited qGL11 within an 810-kb interval on chromosome 11. Sequencing, real time quantitative PCR, and cell morphology analysis revealed that qGL11 might be a novel QTL encoding the cyclin CycT1;3. Finally, pyramiding qGL3 (a = 0.43) and qGL11 (a = − 0.37) led to shorter grains in the dual-segment substitution line D2 and revealed that qGL11 is epistatic to qGL3. In addition, S1 and D2 exhibited different grain sizes and less chalkiness than Z414. In conclusion, the short grain phenotype of the CSSL Z414 is controlled by qGL11, qGL3, and qGL5. qGL11 might be a novel QTL encoding CycT1;3, whose specific role in regulating grain length was previously unknown, and qGL11 is epistatic to qGL3. S1 and D2 could potentially be used in hybrid rice breeding.
Rice chromosomal segment substitution lines (CSSLs) are ideal materials for studying quantitative traits such as grain size. Here, a rice large-grain CSSL-Z403 was identified among progeny of the recipient Xihui18 and the donor Jinhui35 based on molecular marker-assisted selection. Z403 carried 10 substitution segments with average length of 3.01 Mb. Then, a secondary F2 population derived from a cross between Xihui18 and Z403 was used to map quantitative trait loci (QTL) for grain size. Six QTLs distributed on chromosomes 5, 6, 7, 9 and 12 were detected. Finally four single-segment substitution lines (SSSLs) and two dual-segment substitution lines (DSSLs) carrying these target QTLs were constructed, and 10 novel QTLs were identified by four SSSLs. The large grain of Z403 was controlled at least by qGWT5, qGWT7, qGWT9 and qGWT12, and its grain weight was influenced through grain length QTL such as qGL5, qGL6, qGL9 and qGL12, as well as grain width QTL such as qGW5, qGW7, qGW9 and qGW12. Among 16 QTLs, four QTLs including qGL6, etc., might be novel compared with the reported documents. Again, positive or less negative epistatic effects between two non-allelic QTLs (additive effect > 0) may assist screening the genotype with larger grain size in further selection.
Background: Most of rice agronomic traits as grain length etc. are complex traits controlled by multiple genes. Chromosome segment substitution lines (CSSLs) are ideal materials for dissecting and studying of these complex traits. Results: We developed a novel rice short-wide grain CSSL, Z414, deriving from progeny of the recipient parent Xihui 18 (an indica restorer line) and the donor parent Huhan 3 (a japonica cultivar). Z414 contained 4 substitution segments (average length was 3.04 Mb). Compared with Xihui 18, Z414 displayed seven significantly different traits as grain length, width and weight, chalkiness degree, brown rice rate etc. Then, 8 quantitative trait loci (QTLs) were found responding these difference traits by F2 population from Xihui 18/Z414. Among them, 6 QTLs (qPL3, qGW5, qGL11, qRLW5, qRLW11, qGWT5) could be verified by novel developed single segment substitution lines (SSSLs, S1-S6). In addition, 4 QTLs (qGL3, qGL5, qCD3 and qCD5) were novel detected by S1 and S5. Thus, the short–wide grain of Z414 was responded by qGL11, qGL3, qGL5, and qGW5. Then, qGL11 and qGW5 were delimited within intervals of 0.405 and 1.14 Mb on chromosomes 11 and 5, respectively, by substitution mapping. Again by sequencing, qRT-PCR and cell morphology analysis, qGW5 should be a novel allele of GS5 and qGL11 is novel QTL encoding CycT1;3, whose specific function of regulating grain length was still unknown. Finally, pyramid of qGL3 (a=0.22) and qGL11 (a=-0.19) displayed qGL11 epistatic to qGL3. In addition, novel S1 and D2 exhibited different grain sizes and lower chalkiness degree. They are potential to be directly used in breeding hybrid rice varieties.Conclusions: We constructed a novel rice short–wide grain CSSL-Z414 with 4 substitution segments based on the genetic backgrounds of Xihui 18. The broad grain of Z414 was controlled by qGW5, which should be a novel allele of GS5. The short grain of Z414 was controlled by qGL11, qGL3, and qGL5, and qGL11 is a novel QTL encoding CycT1;3, whose specific function of regulating grain length was still unknown, and qGL11 is epistatic to qGL3. Novel S1 and D2 are potential in hybrid rice varieties.
BackgroundMost of rice agronomic traits as grain length etc. are complex traits controlled by multiple genes. Chromosome segment substitution lines (CSSLs) are ideal materials for dissecting and studying of these complex traits. ResultsA rice short-wide grain CSSL Z414 was identified among progeny of the recipient parent Xihui 18 (an indica restorer line) and the donor parent Huhan 3 (a japonica cultivar). Z414 carried 4 substitution segments (average length was 3.04 Mb), and displayed shorter panicle length and less number of primary branches, shorter, wider and larger grain, higher brown rice rate and chalkiness degree when compared with Xihui 18. Then, 9 quantitative trait loci (QTLs) for associated traits were identified using the secondary F2 population from Xihui 18 / Z414. Among them, 6 QTLs (qPL3, qGW5, qGL11, qRLW5, qRLW11, qGWT5) could be verified by corresponding single segment substitution lines (SSSLs, S1-S6). In addition, 4 QTLs (qGL3, qGL5, qCD3 and qCD5) were detected by S1 and S5, which was not detected by the F2 population. Thus, the grain length of Z414 was controlled by qGL11, qGL3 and qGL5, and the grain width of Z414 was answered by qGW5. Then by substitution mapping, qGL11 and qGW5 were delimited within the estimated substitution length of 1.42 and 1.14 Mb on chromosomes 11 and 5, and 4 and 2 candidate genes were found respectively for qGL11 and qGW5 by sequencing. However, only two had expression differences by qRT-PCR analysis. Finally, Analysis of QTL epistatic effects revealed that pyramid of qGL3 (a= 0.22) and qGL11 (a=-0.19) caused grain length of double segment substitution line (DSSL, D2) shorter than that of S5 (qGL11).ConclusionsWe developed a rice short –wide grain CSSL with 4 substitution segments from Huhan 3 based on the genetic backgrounds of Xihui 18. The grain width of Z414 was controlled by qGW5, and GS5 should be the candidate gene for qGW5 by sequencing and qRT-PCR analysis. The grain length of Z414 was controlled by qGL11, qGL3, and qGL5, and CycT1;3 should be the best candidate gene of qGL11, whose specific function of regulating grain length was still unknown, and qGL11 is epistatic to qGL3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.