Background: As the number of PET/CT scanners increases and FDG PET/CT becomes a common imaging modality for oncology, the demands for automated detection systems on artificial intelligence (AI) to prevent human oversight and misdiagnosis are rapidly growing. We aimed to develop a convolutional neural network (CNN)-based system that can classify whole-body FDG PET as 1) benign, 2) malignant or 3) equivocal. Methods: This retrospective study investigated 3485 sequential patients with malignant or suspected malignant disease, who underwent whole-body FDG PET/CT at our institute. All the cases were classified into the 3 categories by a nuclear medicine physician. A residual network (ResNet)-based CNN architecture was built for classifying patients into the 3 categories. In addition, we performed a region-based analysis of CNN (head-and-neck, chest, abdomen, and pelvic region). Results: There were 1280 (37%), 1450 (42%), and 755 (22%) patients classified as benign, malignant and equivocal, respectively. In the patient-based analysis, CNN predicted benign, malignant and equivocal images with 99.4, 99.4, and 87.5% accuracy, respectively. In region-based analysis, the prediction was correct with the probability of 97.3% (head-and-neck), 96.6% (chest), 92.8% (abdomen) and 99.6% (pelvic region), respectively. Conclusion: The CNN-based system reliably classified FDG PET images into 3 categories, indicating that it could be helpful for physicians as a double-checking system to prevent oversight and misdiagnosis.
Patient misidentification in imaging examinations has become a serious problem in clinical settings. Such misidentification could be prevented if patient characteristics such as sex, age, and body weight could be predicted based on an image of the patient, with an alert issued when a mismatch between the predicted and actual patient characteristic is detected. Here, we tested a simple convolutional neural network (CNN)-based system that predicts patient sex from FDG PET-CT images. This retrospective study included 6,462 consecutive patients who underwent whole-body FDG PET-CT at our institute. The CNN system was used for classifying these patients by sex. Seventy percent of the randomly selected images were used to train and validate the system; the remaining 30% were used for testing. The training process was repeated five times to calculate the system鈥檚 accuracy. When images for the testing were given to the learned CNN model, the sex of 99% of the patients was correctly categorized. We then performed an image-masking simulation to investigate the body parts that are significant for patient classification. The image-masking simulation indicated the pelvic region as the most important feature for classification. Finally, we showed that the system was also able to predict age and body weight. Our findings demonstrate that a CNN-based system would be effective to predict the sex of patients, with or without age and body weight prediction, and thereby prevent patient misidentification in clinical settings.
Author identifying informationConflict of Interest: All the authors declare no conflict of interest.Funding: This study has no relevant funding. AbstractObjectives: The joint space difference index (JSDI) is a newly developed radiographic index which can quantitatively assess joint space narrowing progression of rheumatoid arthritis (RA) patients by using an image subtraction method on a computer. The aim of this study was to investigate the reliability of this method by non-experts utilizing RA image evaluation.Method: Four non-experts assessed JSDI for radiographic images of 260 metacarpophalangeal (MP) joints from 26 RA patients twice with an interval of more than 2 weeks. Two rheumatologists and 1 radiologist as well as the 4 non-experts examined the joints by using the Sharp-van der Heijde Scoring (SHS) method. The radiologist and 4 non-experts repeated the scoring with an interval of more than 2 weeks. We calculated intra-/inter-observer reliability using the intra-class correlation coefficients (ICC) for JSDI and SHS scoring, respectively.Results: The intra-/inter-observer reliabilities for the computer-based method were almost perfect ). Contrary to this, intra-/inter-observer reliability for SHS by experts was moderate to almost perfect (inter observer ICC, 0.576-0.862; intra observer ICC, 0.654-0.846). Conclusion:The results suggest that our computer-based method has high reliability to detect finger joint space narrowing progression in RA patients.
Background: As the number of PET/CT scanners increases and FDG PET/CT becomes a common imaging modality for oncology, the demands for automated detection systems on artificial intelligence (AI) to prevent human oversight and misdiagnosis are rapidly growing. We aimed to develop a convolutional neural network (CNN)-based system that can classify whole-body FDG PET as 1) benign, 2) malignant or 3) equivocal. Methods: This retrospective study investigated 3,485 sequential patients with malignant or suspected malignant disease, who underwent whole-body FDG PET/CT at our institute. All the cases were classified into the 3 categories by a nuclear medicine physician. A residual network (ResNet)-based CNN architecture was built for classifying patients into the 3 categories. In addition, we performed a region-based analysis of CNN (head-and-neck, chest, abdomen, and pelvic region). Results: There were 1,280 (37%), 1,450 (42%), and 755 (22%) patients classified as benign, malignant and equivocal, respectively. In the patient-based analysis, CNN predicted benign, malignant and equivocal images with 99.4%, 99.4%, and 87.5% accuracy, respectively. In region-based analysis, the prediction was correct with the probability of 97.3% (head-and-neck), 96.6% (chest), 92.8% (abdomen) and 99.6% (pelvic region), respectively. Conclusion: The CNN-based system reliably classified FDG PET images into 3 categories, indicating that it could be helpful for physicians as a double-checking system to prevent oversight and misdiagnosis.
Background: As the number of PET/CT scanners increases and FDG PET/CT becomes a common imaging modality for oncology, the demands for automated detection systems on artificial intelligence (AI) to prevent human oversight and misdiagnosis are rapidly growing. We aimed to develop a convolutional neural network (CNN)-based system that can classify whole-body FDG PET as 1) benign, 2) malignant or 3) equivocal. Methods: This retrospective study investigated 3,485 sequential patients with malignant or suspected malignant disease, who underwent whole-body FDG PET/CT at our institute. All the cases were classified into the 3 categories by a nuclear medicine physician. A residual network (ResNet)-based CNN architecture was built for classifying patients into the 3 categories. In addition, we performed a region-based analysis of CNN (head-and-neck, chest, abdomen, and pelvic region). Results: There were 1,280 (37%), 1,450 (42%), and 755 (22%) patients classified as benign, malignant and equivocal, respectively. In the patient-based analysis, CNN predicted benign, malignant and equivocal images with 99.4%, 99.4%, and 87.5% accuracy, respectively. In region-based analysis, the prediction was correct with the probability of 97.3% (head-and-neck), 96.6% (chest), 92.8% (abdomen) and 99.6% (pelvic region), respectively. Conclusion: The CNN-based system reliably classified FDG PET images into 3 categories, indicating that it could be helpful for physicians as a double-checking system to prevent oversight and misdiagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.