BackgroundAcute lung injury (ALI) is a life-threatening lung disease where alveolar macrophages (AMs) play a central role both in the early phase to initiate inflammatory responses and in the late phase to promote tissue repair. In this study, we examined whether BML-111, a lipoxin A4 receptor agonist, could alter the phenotypes of AM and thus present prophylactic benefits for ALI.MethodsIn vitro, isolated AMs were treated with lipopolysaccharide (LPS) to induce ALI. In response to BML-111 pre-treatment, apoptosis and autophagy of AMs were examined by flow cytometry, and by measuring biomarkers for each process. The potential involvement of MAPK1 and mTOR signaling pathway was analyzed. In vivo, an LPS-induced septic ALI model was established in rats and the preventative significance of BML-111 was assessed. On the cellular and molecular levels, the pro-inflammatory cytokines TNF-α and IL-6 from bronchoalveolar lavage were measured by ELISA, and the autophagy in AMs examined using Western blot.ResultsBML-111 inhibited apoptosis and induced autophagy of AMs in response to ALI inducer, LPS. The enhancement of autophagy was mediated through the suppression of MAPK1 and MAPK8 signaling, but independent of mTOR signaling. In vivo, BML-111 pre-treatment significantly alleviated LPS-induced ALI, which was associated with the reduction of apoptosis, the dampened production of pro-inflammatory cytokines in the lung tissue, as well as the increase of autophagy of AMs.ConclusionsThis study reveals the prophylactic significance of BML-111 in ALI and the underlying mechanism: by targeting the MAPK signaling but not mTOR pathway, BML-111 stimulates autophagy in AMs, attenuates the LPS-induced cell apoptosis, and promotes the resolution of ALI.
To analyze the clinical characteristics of re-positive discharged COVID-19 patients and find distinguishing markers. The demographic features, clinical symptoms, laboratory results, comorbidities, co-infections, treatments, illness severities and chest CT scan results of 267 patients were collected from 1st January to 15th February 2020. COVID-19 was diagnosed by RT-PCR. Clinical symptoms and nucleic acid test results were collected during the 14 days post-hospitalization quarantine. 30 out of 267 COVID-19 patients were detected re-positive during the post-hospitalization quarantine. Re-positive patients could not be distinguished by demographic features, clinical symptoms, laboratory results, comorbidities, co-infections, treatments, chest CT scan results or subsequent clinical symptoms. However, re-positive rate was found to be correlated to illness severity, according the Acute Physiology and Chronic Health Evaluation II (APACHE II) severity-of-disease classification system, and the confusion, urea, respiratory rate and blood pressure (CURB-65) score. Common clinical characteristics were not able to distinguish re-positive patients. However, severe and critical cases classified high according APACHE II and CURB-65 scores, were more likely to become re-positive after discharge.
Our study aimed to explore the function of circRNA_0001805 in the pathogenesis of NAFLD and the underlying mechanism. A nanodrug system (GA-RM/GZ/PL) was constructed to overexpress circRNA_0001805 specifically in hepatocytes for the treatment of NAFLD. Fat droplet accumulation in cultured cells and mouse hepatic tissues was detected using Oil Red O or H&E staining. The relative expression of circRNAs, genes associated with lipogenesis was quantified by qRT-PCR. Interactions between circRNA_0001805 and miR-106a-5p/miR-320a, between miR-106a-5p/miR-320a and ABCA1/CPT1 were confirmed by dual-luciferase reporter assay. A novel metalorganic framework nanocarrier (GZ) was prepared from glycyrrhizic acid and zinc ions (Zn2+), and this nanocarrier was loaded with the circRNA_0001805 plasmid to construct a nanocore (GZ/PL). Then, this GZ/PL was coated with a galactose-modified RBC membrane (GA-RM) to generate GA-RM/GZ/PL. CircRNA_0001805 expression was downregulated in FFA-challenged primary hepatocytes, HFD-fed mice and NAFLD patients. Overexpressed circRNA_0001805 attenuated NAFLD development by suppressing lipid metabolism disorder and inflammation. CircRNA_0001805 targeted miR-106a-5p/miR-320a, which served as an upstream inhibitor of ABCA1/CPT1 and collaboratively regulated NAFLD progression. GA-RM/GZ/PL targeted hepatocytes, overexpressed circRNA_0001805, released glycyrrhizic acid to reduce the accumulation of lipids in the liver and played a synergistic role against NAFLD-induced lipid metabolism disorder. Graphical Abstract
Nonalcoholic fatty liver disease (NAFLD) is regarded as a threat to public health; however, the pathologic mechanism of NAFLD is not fully understood. We attempted to identify abnormally expressed long noncoding RNA (lncRNAs) and messenger RNA that may affect the occurrence and development of NAFLD in this study. The expression of differentially expressed lncRNAs in NAFLD was determined in oleic acid (OA)‐treated L02 cells, and the functions of CCAT1 in lipid droplet formation were evaluated in vitro. Differentially expressed genes (DEGs) were analyzed by microarray analysis, and DEGs related to CCTA1 were selected and verified by weighted correlation network analysis. The dynamic effects of LXRα and CCTA1 on lipid droplet formation and predicted binding was examined. The binding between miR‐631 and CCAT1 and LXRα was verified. The dynamic effects of miR‐613 inhibition and CCTA1 silencing on lipid droplet formation were examined. The expression and correlations of miR‐631, CCAT1, and LXRα were determined in tissue samples. As the results show, CCAT1 was induced by OA and upregulated in NAFLD clinical samples. CCAT1 silencing significantly suppressed lipid droplet accumulation in vitro. LXRα was positively correlated with CCAT1. By inhibiting miR‐613, CCAT1 increased the transcription of LXRα and promoted LXRα expression. The expression of LXRα was significantly increased in NAFLD tissues and was positively correlated with CCAT1. In conclusion, CCAT1 increases LXRα transcription by serving as a competing endogenous RNA for miR‐613 in an LXRE‐dependent manner, thereby promoting lipid droplet formation and NAFLD. CCAT1 and LXRα might be potent targets for NAFLD treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.