Some of the characteristics of cancer cells are high rates of cell proliferation, cell survival, and the ability to invade surrounding tissue. The cytoskeleton has an essential role in these processes. Dynamic changes in the cytoskeleton are necessary for cell motility and cancer cells are dependent on motility for invasion and metastasis. The signaling pathways behind the reshaping and migrating properties of the cytoskeleton in cancer cells involve a group of Ras-related small GTPases and their effectors, including the p21-activated kinases (Paks). Paks are a family of serine/threonine protein kinases comprised of six isoforms (Pak 1–6), all of which are direct targets of the small GTPases Rac and Cdc42. Besides their role in cytoskeletal dynamics, Paks have recently been shown to regulate various other cellular activities, including cell survival, mitosis, and transcription. Paks are overexpressed and/or hyperactivated in several human tumors and their role in cell transformation makes them attractive therapeutic targets. Pak-targeted therapeutics may efficiently inhibit certain types of tumors and efforts to identify selective Pak-inhibitors are underway.
MicroRNAs (miRs) are non-coding RNAs that inhibit expression of their targets in a sequence-specific manner and play crucial roles during oncogenesis. Here we show that miR-7 inhibits p21-activated kinase 1 (Pak1) expression, a widely upregulated signaling kinase in multiple human cancers including breast and gliomas, by targeting the 3′-UTR of Pak1 mRNA. We noticed an inverse correlation between the levels of endogenous miR-7 and Pak1 expression in human cancer cells. We discovered that endogenous miR-7 expression is positively regulated by a homeodomain transcription factor HoxD10, loss of which leads to an increased invasiveness. The HoxD10 directly interacts with the miR-7 chromatin. Accordingly, the levels of Pak1 protein are progressively upregulated while that of miR-7 and its upstream activator HoxD10 are progressively downregulated in a cellular model of breast cancer progression from low to highly invasive phenotypes. Furthermore, HoxD10 expression in highly invasive breast cancer cells resulted in an increased expression of miR-7 but a reduced Pak1 3′UTR-luciferase activity as well as reduced Pak1 protein. Finally, we show that miR-7 introduction inhibits the motility, invasiveness, anchorage-independent growth and tumorigenic potential of highly invasive breast cancer cells. Collectively, these findings establish for the first time that Pak1 is a target of miR-7 and that HoxD10 play a regulatory role in modifying the expression of miR-7, and consequently, functions of miR7 - Pak1 pathway in human cancer cells.
SUMMARY Chromatin dynamics play a central role in maintaining genome integrity, but how this is achieved remains largely unknown. Here, we report that microrchidia CW-type zinc finger 2 (MORC2), an uncharacterized protein with a derived PHD finger domain and a conserved GHKL-type ATPase module, is a physiological substrate of p21-activated kinase 1 (PAK1), an important integrator of extracellular signals and nuclear processes. Following DNA damage, MORC2 is phosphorylated on serine 739 in a PAK1 dependent manner, and phosphorylated MORC2 regulates its DNA-dependent ATPase activity to facilitate chromatin remodeling. Moreover, MORC2 associates with chromatin and promotes gamma-H2AX induction in a PAK1 phosphorylation-dependent manner. Consequently, cells expressing MORC2-S739A mutation displayed a reduction in DNA repair efficiency and were hypersensitive to DNA-damaging agent. These findings suggest that the PAK1-MORC2 axis is critical for orchestrating the interplay between chromatin dynamics and the maintenance of genomic integrity through sequentially integrating multiple essential enzymatic processes.
Breast cancer transcriptome acquires a myriad of regulation changes, and splicing is critical for the cell to “tailor-make” specific functional transcripts. We systematically revealed splicing signatures of the three most common types of breast tumors using RNA sequencing: TNBC, non-TNBC and HER2-positive breast cancer. We discovered subtype specific differentially spliced genes and splice isoforms not previously recognized in human transcriptome. Further, we showed that exon skip and intron retention are predominant splice events in breast cancer. In addition, we found that differential expression of primary transcripts and promoter switching are significantly deregulated in breast cancer compared to normal breast. We validated the presence of novel hybrid isoforms of critical molecules like CDK4, LARP1, ADD3, and PHLPP2. Our study provides the first comprehensive portrait of transcriptional and splicing signatures specific to breast cancer sub-types, as well as previously unknown transcripts that prompt the need for complete annotation of tissue and disease specific transcriptome.
SUMMARY We present an integromic analysis of gene alterations that modulate transforming growth factor β (TGF-β)-Smad–mediated signaling in 9,125 tumor samples across 33 cancer types in The Cancer Genome Atlas (TCGA). Focusing on genes that encode mediators and regulators of TGF-β signaling, we found at least one genomic alteration (mutation, homozygous deletion, or amplification) in 39% of samples, with highest frequencies in gastrointestinal cancers. We identified mutation hotspots in genes that encode TGF-β ligands (BMP5), receptors (TGFBR2, AVCR2A, BMPR2), and Smads (SMAD2, SMAD4). Alterations in the TGF-β superfamily correlated positively with expression of metastasis-associated genes and with decreased survival. Correlation analyses showed the contributions of mutation, amplification, deletion, DNA methylation, and miRNA expression to transcriptional activity of TGF-β signaling in each cancer type. This study provides a broad molecular perspective relevant for future functional and therapeutic studies of the diverse cancer pathways mediated by the TGF-β superfamily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.