In cirrhosis with bacterial peritonitis, hyperactivity of the splanchnic sympathetic nervous system contributes to the translocation of E coli but not S aureus to MLN and extraintestinal sites. This indicates a key role for sympathetic drive in the impairment in host defence against Gram-negative bacteria in cirrhosis.
Flow cytometry (FCM) is a technique that measures the quantity of DNA contained in individual nuclei and records a frequency distribution of the DNA content per nucleus in the sampled cell population. Nuclei from a variety of human brain-tumor types were isolated by means of tissue grinding, purified by centrifugation through 40% sucrose (15 minutes at 4000 rpm), fixed with 10% formalin, stained with acriflavin-Feulgen, and analyzed by FCM. Profiles of DNA distribution in histologically benign tumors, such as meningiomas, pituitary adenomas, neuroblastomas, and low-grade astrocytomas, revealed a large diploid population (2C) with a few nuclei in DNA synthesis, as well as a small premitotic population (G2 cells) that contains a 4C DNA complement. In contrast, malignant gliomas, including glioblastomas, consist of more cells in DNA synthesis; these tumor cells show a highly variable distribution of ploidy consisting not only of diploid, and/or aneuploid, but also of triploid, tetraploid, and possibly octaploid populations. Also, a large variability between different regions of each tumor was always observed. In contrast, metastatic brain tumors, despite the fact that they contain a considerable number of cells undergoing DNA synthesis, demonstrate little variability within each individual tumor. The ability to rapidly characterize the cell populations of human brain tumors with FCM may enhance the effectiveness of their clinical management.
Malignant human gliomas have a highly variable distribution of cell nuclei, consisting of diploid and/or other populations in terms of nuclear DNA content. In order to study in vitro clonogenicity of each population, dissociated or cultured human glioma cells were stained with 20 μM/ml of Hoechst 33342 dye (which stains viable DNA with minimal cell kill), and were sorted sterile into separate populations, based on specific nuclear DNA content, for clonogenicity assay. The colony‐forming efficiency (CFE) of tumor cells plated immediately after disaggregation of the biopsy specimens ranged from 0.0044 to 0.149%, and the CFEs increased dramatically with successive passages (to 5 to 40%). The CFEs of the individual populations sorted according to DNA content were similar within individual tumors. These results suggest not only that malignant gliomas are composed of multiple populations in terms of DNA content, but also that each of these populations contain clonogenic cells. The morphologic structure of cells within and among colonies did not appear to relate to DNA content.
An in vitro colony formation assay for the evaluation of in vivo brain tumor therapy has been developed. When plated, disaggregated cells derived from solid tumors proliferated to form relatively homogeneous colonies after a latency period of 2 to 6 days. Increasing concentrations of fetal calf serum enhanced colony-forming efficiency (CFE) with a plateau between 7 and 16%. Supplementation with either irradiated feeder cells (10(3) to 10(5) cells per dish), or medium conditioned by 1 to 3 days of in vitro incubation with the same cell line, doubled the CFE. The density of tumor cells (untreated or previously treated with chemotherapeutic agents) did not affect the CFE when a minimum of 10(4) total cells (tumor plus feeder) were plated. Therefore, in this system the optimal experimental conditions for evaluating chemotherapy and radiotherapy require incubation of disaggregated tumor cells for 12 days in medium containing 10% of fetal calf serum and enough feeder cells to provide a minimum of 10(4) cells per dish. The CFE for untreated tumors was 18 +/- 10% (+/-S.D.), demonstrating that there is significant biological variation. The assay appeared sensitive, with reproducible results, when applied to individual chemically treated tumors. An estimate of the percentage of clonogenic cells affected by in vivo chemotherapy may be obtained by comparing the CFE of cells from treated and untreated tumors. This assay can measure up to a 5 log(10) cell kill, and it should prove to be valuable in developing more effective regimens for the treatment of solid tumors in animals and man.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.