Climate change is predicted to have widespread impacts on freshwater lake and reservoir nutrient budgets by altering both hypolimnetic hypoxia and runoff, which will in turn alter the magnitude of internal and external nutrient loads. To examine the effects of these potential climate scenarios on nitrogen (N) and phosphorus (P) budgets, we conducted a whole-catchment manipulation of hypolimnetic oxygen conditions and external loads to Falling Creek Reservoir (FCR), an old, eutrophic reservoir in a reforested catchment with a history of agricultural land use. Throughout 2 years of monitoring, internal N and P loading during hypoxic conditions dominated the hypolimnetic mass of nutrients in FCR, regardless of changes in external loading. FCR commonly functioned as a net sink of N and P, except during hypoxic conditions, when the reservoir was a net source of ammonium (NH þ 4 ) to downstream. We observed extremely high nitrate-nitrite (NO À 3 ÀNO À 2 ), soluble reactive P (SRP), total nitrogen (TN), and total phosphorus (TP) retention rates, indicating that the reservoir served as a sink for greater than 70% of NO À 3 ÀNO À 2 inputs and greater than 30% of SRP, TN, and TP inputs, on average. Our study is notable in the length of time since reforestation (>80 years) that a reservoir is still exhibiting high N and P internal loading during hypoxia, potentially as a result of the considerable store of accumulated nutrients in its sediment from historical agricultural runoff. Our whole-catchment manipulations highlight the importance of understanding how multiple aspects of global change, waterbody and catchment characteristics, and land use history will interact to alter nutrient budgets in the future.
Cyanobacterial blooms are increasing in waterbodies worldwide because of anthropogenic forcing. Most blooms occur at the water's surface, but some cyanobacterial taxa, such as Planktothrix, are able to modify their buoyancy to access more favorable growing conditions in deeper waters. Here, we used in situ fluorometry to examine the vertical distribution and biomass of Planktothrix in a seasonally anoxic reservoir for 3 consecutive summers. We also collected depth profiles of photosynthetically active radiation, temperature, and nutrients to evaluate which environmental drivers were most important for predicting Planktothrix biomass. In all 3 summers, Planktothrix dominated the phytoplankton community, exhibiting a large (concentrations~100 lg/L), persistent (lasting~100 d) bloom below the thermocline. The bloom consistently exhibited maximum biomass at or below the depth reached by 1% of surface light. Light availability probably was the most important factor driving the vertical distribution of the stratified Planktothrix bloom, and light, temperature, and nutrients together were strong predictors of cyanobacterial biomass in the hypolimnion, explaining 71 to 93% of the variation in biomass. Our data suggest that Planktothrix remained in the hypolimnion where nutrient availability was maximized, while progressing slightly upward in the water column through each summer in response to light limitation. Our findings demonstrate that Planktothrix can dominate in low light and anoxic conditions and can form persistent blooms that last for multiple months. As cyanobacterial blooms become more prevalent, monitoring cyanobacteria at the surface and at depth will become critically important in freshwater ecosystems.
Lakes and reservoirs worldwide are increasingly experiencing depletion of dissolved oxygen (anoxia) in their bottom waters (the hypolimnion) because of climate change and eutrophication, which is altering the dynamics of many freshwater ecological communities. Hypolimnetic anoxia may substantially alter the daily migration and distribution of zooplankton, the dominant grazers of phytoplankton in aquatic food webs. In waterbodies with oxic hypolimnia, zooplankton exhibit diel vertical migration (DVM), in which they migrate to the dark hypolimnion during the day to escape fish predation or ultraviolet (UV) radiation damage in the well‐lit surface waters (the epilimnion). However, due to the physiologically stressful conditions of anoxic hypolimnia, we hypothesized that zooplankton may be forced to remain in the epilimnion during daylight, trading oxic stress for increased predation risk or UV radiation damage. To examine how anoxia impacts zooplankton vertical migration, distribution, biomass, and community composition over day–night periods, we conducted multiple diel sampling campaigns on reservoirs that spanned oxic, hypoxic, and anoxic hypolimnetic conditions. In addition, we sampled the same reservoirs fortnightly during the daytime to examine the vertical position of zooplankton throughout the summer stratified season. Under anoxic conditions, most zooplankton taxa were predominantly found in the epilimnion during the day and night, did not exhibit DVM, and had lower seasonal biomass than in reservoirs with oxic hypolimnia. Only the phantom midge larva, Chaoborus spp., was consistently anoxia‐tolerant. Consequently, our results suggest that hypolimnetic anoxia may alter zooplankton migration, biomass, and behavior, which may in turn exacerbate water quality degradation due to the critical role zooplankton play in freshwater ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.