BackgroundThe development of obesity and related disorders, e.g., type II diabetes (T2D), hypertension, and metabolic disturbances is strongly related to increased levels in proinflammatory cytokines (IL-1, IL-6, and TNF-α). Both IL-6 and TNF-α are secreted by adipocytes and their concentration correlates with the percentage and distribution of fat tissue in the body. Both cytokines are the main factors responsible for the induction of acute phase proteins production (e.g., CRP) and to inflammatory state.ObjectiveTo compare of TNF-α and IL-6 concentrations in serum from obese subjects with those in subjects with normal BMI and to analyze the relation between TNF-α, IL-6, BMI and the inflammatory state as measured by the level of CRP.Material and methodsThe study included 80 obese subject (54 males and 26 females) BMI > 25 kg/m2. A control group consisted of 53 healthy subjects (24 males and 29 females) with BMI < 25 kg/m2. To determine the blood plasma concentration of IL-6 and TNF, commercial ELISA assay kits were used.ResultsThe concentration of IL-6 was lower in the control compared with the obese patients, but a significance difference concerned only female subjects (P = 0.001). TNF-α concentration was significantly higher in all obese subjects (P < 0.001). A higher level of this cytokine was also found in patients with obesity suffering from T2DM. A positive correlation was present between IL-6 and TNF-α concentrations. Only did the IL-6 level correlate with the concentration of CRP in serum.ConclusionsThe study confirmed that increased inflammatory cytokines lead to the persistence of inflammation in obese subjects. However, some other factors, such as gender, may contribute to the development of obesity-related inflammatory states.
Perforin is a glycoprotein responsible for pore formation in cell membranes of target cells. Perforin is able to polymerize and form a channel in target cell membrane. Many research groups focus on the role of perforin in various diseases, immune response to bacterial and viral infections, immune surveillance and immunopathology. In addition, perforin is involved in the pathogenesis of autoimmune diseases and allogeneic transplant rejection. Natural killer (NK) cells and CD8-positive T-cells are the main source of perforin. However, CD4-positive T-cells are also able to express a low amount of perforin, when classic cytotoxicity is ineffective or disturbed.Polymerized perforin molecules form channels enabling free, non-selective, passive transport of ions, water, small-molecule substances and enzymes. In consequence, the channels disrupt protective barrier of cell membrane and destroy integrity of the target cell. This review will focus on mechanisms of action and structure of perforin. Also, in this review we discuss the problem of abnormal perforin production in diseases such as: hemophagocytic lymphohistiocytosis (HLH), leukemias and lymphomas, infectious diseases and autoimmune diseases. Better understanding of the role of these molecules in health and disease will open a new field of research with possible therapeutic implications.
Leptin or obesity receptor (Ob-R) is a member of class I cytokine receptor family. Ob-R, expressed in six isoforms, is the product of alternative RNA splicing of db gene. According to its structural differences, the receptor's isoforms are divided into three classes: long, short, and secretory isoforms. A long, fully active isoform of Ob-Rb is expressed mainly in the hypothalamus, where it takes part in energy homeostasis and in the regulation of secretory organs' activity. Ob-Rb is also present on all types of immune cells, involved in innate and adaptive immunity. Short leptin isoforms (Ob-Ra, Ob-Rc, Ob-Rd, and Ob-Re) that contain box 1 motif are able to bind JAK kinases (Janus kinases) as well as to activate some other signal transduction cascades. A soluble isoform (Ob-Re) can regulate serum leptin concentration and serve as a carrier protein delivering the hormone to its membrane receptors and is able to transduce the signal into the cell. JAK/STAT pathway plays the major role in leptin signal transduction through membrane receptors. Among all Ob-R isoforms, only full-length isoform (Ob-Rb) is able to fully transduce activation signal into the cell.
Hemophagocytic syndrome, also known as hemophagocytic lymphohistiocytosis (HLH), is a heterogenic syndrome, which leads to an acute, life-threatening inflammatory reaction. HLH occurs both in children and adults, and can be triggered by various inherited as well as acquired factors. Depending on the etiology, HLH can be divided into genetic (i.e., primary) and acquired (i.e., secondary) forms. Among genetic HLH forms, one can distinguish between familial HLH and other genetically conditioned forms of HLH. Acquired HLH can be typically triggered by infections, autoimmune diseases, and malignancies. The most common symptoms of HLH are unremitting fever, splenomegaly, and peripheral blood cytopenia. Some severely ill patients present with central nervous system involvement. Laboratory tests reveal hyperferritinemia (often >10,000 μg/L), increased serum concentration of soluble receptor α for interleukin-2 (>2,400 U/L), hypertriglyceridemia, hypofibrinogenemia, coagulopathy, hyponatremia, hypoproteinemia, and elevated liver transaminases and bilirubin. Prognosis in HLH is very serious. Genetic HLH is always lethal if adequate therapy is not administered. Similarly, severe acquired cases often lead to death without appropriate treatment. Since HLH can be encountered by various specialists in the medical field, basic knowledge of this entity such as diagnostic criteria and treatment should be familiar to all physicians.
There is growing evidence that NK cell-mediated immunoregulation plays an important role in the control of autoimmunity. NK cells are a subset of lymphocytes that generally contribute to innate immunity but have also a great impact on the function of T and B lymphocytes. The major role of NK cells is cytotoxic reaction against neoplastic, infected and autoreactive cells, but they regulatory function seems to play more important role in the pathogenesis of autoimmune diseases. Numerous studies suggested the involvement of NK cells in pathogenesis of such a common autoimmune diseases as juvenile rheumatoid arthritis, type I diabetes and autoimmune thyroid diseases. The defects of NK cells regulatory function as well as cytotoxic abilities are common in patients with autoimmune diseases with serious consequences including HLH hemophagocytic lymphocytosis (HLH) and macrophage activation syndrome (MAS). The early diagnosis of NK cells defect responsible for the loss of the protective abilities is crucial for the prevention of life-threatening complications and implementation of necessary treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.