Werner syndrome (WS) is a premature aging disorder, displaying defects in DNA replication, recombination, repair, and transcription. It has been hypothesized that several WS phenotypes are secondary consequences of aberrant gene expression and that a transcription defect may be crucial to the development of the syndrome. We used cDNA microarrays to characterize the expression of 6,912 genes and ESTs across a panel of 15 primary human fibroblast cell lines derived from young donors, old donors, and WS patients. Of the analyzed genes, 6.3% displayed significant differences in expression when either WS or old donor cells were compared with young donor cells. This result demonstrates that the WS transcription defect is specific to certain genes. Transcription alterations in WS were strikingly similar to those in normal aging: 91% of annotated genes displayed similar expression changes in WS and in normal aging, 3% were unique to WS, and 6% were unique to normal aging. We propose that a defect in the transcription of the genes as identified in this study could produce many of the complex clinical features of WS. The remarkable similarity between WS and normal aging suggests that WS causes the acceleration of a normal aging mechanism. This finding supports the use of WS as an aging model and implies that the transcription alterations common to WS and normal aging represent general events in the aging process.W erner syndrome (WS) is an autosomal recessive disease characterized by early onset of many signs of normal aging, such as graying of the hair, scleroderma-like skin changes, ocular cataracts, diabetes, degenerative vascular disease, osteoporosis, and high incidence of some types of cancers (1). As a segmental progeroid syndrome, WS does not exhibit all of the features of normal aging but nevertheless is a very useful model system for the molecular study of normal aging.The molecular basis of WS is a single mutation in the WRN gene, resulting in a truncated WS protein (WRN) characterized by a loss of nuclear localization signal and protein function (2). WRN has been demonstrated to possess helicase and exonuclease activities (3, 4) and belongs to the RecQ family of helicases. Various defects in DNA replication, recombination, repair, and transcription are found in WS fibroblasts (reviewed in ref. 5). The mechanisms by which the biochemical deficiencies resulting from WRN mutations lead to the characteristic pathology of the syndrome are not yet understood. It has been hypothesized that several WS phenotypes are secondary consequences of aberrant gene expression (6) and that a transcription defect may be crucial to the development of the syndrome (7). Increasing evidence suggests that WRN has a role in transcription. Human WRN activates transcription in a yeast system (8), and recent studies from this laboratory demonstrated that RNA polymerase (pol) II transcription is reduced by 40-60% in WS cells, indicating a primary defect in transcription (7). Supporting this finding, we found that RNA pol II transcription i...
Up to 13% of women may experience symptoms of depression during pregnancy or in the postpartum period. Depression during pregnancy has been associated with an increased risk of adverse neurodevelopmental outcomes in the child and epigenetic mechanisms could be one of the biological pathways to explain this association. In 844 mother–child pairs from the Avon Longitudinal Study of Parents and Children, we carried out an epigenome-wide association study (EWAS) to investigate associations between prospectively collected data on maternal depression ascertained by the Edinburgh Postnatal Depression Scale in pregnancy and DNA methylation in the cord blood of newborn offspring. In individual site analysis, we identified two CpG sites associated with maternal depression in the middle part of pregnancy. In our regional analysis, we identified 39 differentially methylated regions (DMRs). Seven DMRs were associated with depression at any time point during pregnancy, 7 associated with depression in mid-pregnancy, 23 were associated with depression in late pregnancy, and 2 DMRs were associated with depression throughout pregnancy. Several of these map to genes associated with psychiatric disease and brain development. We attempted replication in The Generation R Study and could not replicate our results. Although our findings in ALSPAC suggest that maternal depression could be associated with cord blood DNA methylation the results should be viewed as preliminary and hypothesis generating until further replicated in a larger sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.