London School of EconomicsAbstract: We propose a new technique for consistent estimation of the number and locations of the change-points in the second-order structure of a time series. The core of the segmentation procedure is the Wild Binary Segmentation method (WBS), a technique which involves a certain randomised mechanism. The advantage of WBS over the standard Binary Segmentation lies in its localisation feature, thanks to which it works in cases where the spacings between change-points are short. In addition, we do not restrict the total number of change-points a time series can have. We also ameliorate the performance of our method by combining the CUSUM statistics obtained at different scales of the wavelet periodogram, our main change-point detection statistic, which allows a rigorous estimation of the local autocovariance of a piecewise-stationary process. We provide a simulation study to examine the performance of our method for different types of scenarios. A proof of consistency is also provided. Our methodology is implemented in the R package wbsts, available from CRAN.
An assumption in modelling financial risk is that the underlying asset returns are stationary. However, there is now strong evidence that multivariate financial time series entail changes not only in their within-series dependence structure, but also in the correlations among them. For this reason, we propose a method for consistent detection of multiple change-points in (possibly high) N -dimensional GARCH panel data set, where both individual GARCH processes and their correlations are allowed to change. We prove its consistency in multiple change-point estimation, and demonstrate its good performance through an extensive simulation study and an application to the Valueat-Risk problem on a real dataset. Our methodology is implemented in the R package segMGarch, available from CRAN.
We propose a new technique for consistent estimation of the number and locations of the change-points in the structure of an irregularly spaced time series. The core of the segmentation procedure is the ensemble binary segmentation method (EBS), a technique in which a large number of multiple change-point detection tasks using the binary segmentation method are applied on sub-samples of the data of differing lengths, and then the results are combined to create an overall answer. We do not restrict the total number of change-points a time series can have, therefore, our proposed method works well when the spacings between change-points are short. Our main change-point detection statistic is the time-varying autoregressive conditional duration model on which we apply a transformation process in order to decorrelate it. To examine the performance of EBS we provide a simulation study for various types of scenarios. A proof of consistency is also provided. Our methodology is implemented in the R package , available to download from CRAN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.