Electron microscopic immunohistochemical double-label studies were carried out in pigeons to characterize the ultrastructural organization and postsynaptic targets of enkephalinergic (ENK+) striatonigral projection. ENK+ terminals in the substantia nigra were labeled with antileucine-enkephalin antiserum by using peroxidase-antiperoxidase methods, and dopaminergic neurons were labeled with anti-tyrosine hydroxylase antiserum by using silver-intensified immunogold methods. ENK+ terminals on dopaminergic neurons were equal in abundance to ENK+ terminals on nondopaminergic neurons, although the former were typically somewhat smaller than the latter (mean size: 0.50 vs. 0.75 micron, respectively). ENK+ terminals were evenly distributed on the cell bodies and dendrites of dopaminergic neurons, and they were evenly distributed on dendrites but rare on perikarya of nondopaminergic neurons. Transection of the basal telencephalic output revealed that 75% of the nigral ENK+ terminals were of basal telencephalic origin. These telencephalic ENK+ terminals included over 80% of those smaller than 0.80 micron on dopaminergic neurons and smaller than 1.0 micron on nondopaminergic neurons, and none greater than this in size. Both telencephalic and the nontelencephalic ENK+ nigral terminals made predominantly symmetric synapses on nigral neurons. Although the basal telencephalic ENK+ terminals uniformly targeted dendrites and perikarya, nontelencephalic ENK+ terminals seemed to avoid perikarya. The results indicate that ENK+ striatonigral neurons in birds may directly influence both dopaminergic and nondopaminergic neurons of the substantia nigra. Based on similar data for substance P-containing striatonigral terminals, the roles of enkephalin and substance P in influencing nigral dopaminergic neurons may differ slightly, as they appear to target preferentially different portions of dopaminergic neurons. The overall results in pigeons are similar to those for ENK+ terminals in the ventral tegmental area in rats, suggesting that the synaptic organization of the ENK+ input to the tegmental dopaminergic cell fields is similar in mammals and birds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.