We performed a linkage analysis on 25 extended multiplex Portuguese families segregating for bipolar disorder, by use of a high-density single-nucleotide-polymorphism (SNP) genotyping assay, the GeneChip Human Mapping 10K Array (HMA10K). Of these families, 12 were used for a direct comparison of the HMA10K with the traditional 10-cM microsatellite marker set and the more dense 4-cM marker set. This comparative analysis indicated the presence of significant linkage peaks in the SNP assay in chromosomal regions characterized by poor coverage and low information content on the microsatellite assays. The HMA10K provided consistently high information and enhanced coverage throughout these regions. Across the entire genome, the HMA10K had an average information content of 0.842 with 0.21-Mb intermarker spacing. In the 12-family set, the HMA10K-based analysis detected two chromosomal regions with genomewide significant linkage on chromosomes 6q22 and 11p11; both regions had failed to meet this strict threshold with the microsatellite assays. The full 25-family collection further strengthened the findings on chromosome 6q22, achieving genomewide significance with a maximum nonparametric linkage (NPL) score of 4.20 and a maximum LOD score of 3.56 at position 125.8 Mb. In addition to this highly significant finding, several other regions of suggestive linkage have also been identified in the 25-family data set, including two regions on chromosome 2 (57 Mb, NPL = 2.98; 145 Mb, NPL = 3.09), as well as regions on chromosomes 4 (91 Mb, NPL = 2.97), 16 (20 Mb, NPL = 2.89), and 20 (60 Mb, NPL = 2.99). We conclude that at least some of the linkage peaks we have identified may have been largely undetected in previous whole-genome scans for bipolar disorder because of insufficient coverage or information content, particularly on chromosomes 6q22 and 11p11.
BackgroundAutism spectrum disorder (ASD) is a common neurodevelopmental disorder that lacks adequate screening tools, often delaying diagnosis and therapeutic interventions. Despite a substantial genetic component, no single gene variant accounts for >1 % of ASD incidence. Epigenetic mechanisms that include microRNAs (miRNAs) may contribute to the ASD phenotype by altering networks of neurodevelopmental genes. The extracellular availability of miRNAs allows for painless, noninvasive collection from biofluids. In this study, we investigated the potential for saliva-based miRNAs to serve as diagnostic screening tools and evaluated their potential functional importance.MethodsSalivary miRNA was purified from 24 ASD subjects and 21 age- and gender-matched control subjects. The ASD group included individuals with mild ASD (DSM-5 criteria and Autism Diagnostic Observation Schedule) and no history of neurologic disorder, pre-term birth, or known chromosomal abnormality. All subjects completed a thorough neurodevelopmental assessment with the Vineland Adaptive Behavior Scales at the time of saliva collection. A total of 246 miRNAs were detected and quantified in at least half the samples by RNA-Seq and used to perform between-group comparisons with non-parametric testing, multivariate logistic regression and classification analyses, as well as Monte-Carlo Cross-Validation (MCCV). The top miRNAs were examined for correlations with measures of adaptive behavior. Functional enrichment analysis of the highest confidence mRNA targets of the top differentially expressed miRNAs was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID), as well as the Simons Foundation Autism Database (AutDB) of ASD candidate genes.ResultsFourteen miRNAs were differentially expressed in ASD subjects compared to controls (p <0.05; FDR <0.15) and showed more than 95 % accuracy at distinguishing subject groups in the best-fit logistic regression model. MCCV revealed an average ROC-AUC value of 0.92 across 100 simulations, further supporting the robustness of the findings. Most of the 14 miRNAs showed significant correlations with Vineland neurodevelopmental scores. Functional enrichment analysis detected significant over-representation of target gene clusters related to transcriptional activation, neuronal development, and AutDB genes.ConclusionMeasurement of salivary miRNA in this pilot study of subjects with mild ASD demonstrated differential expression of 14 miRNAs that are expressed in the developing brain, impact mRNAs related to brain development, and correlate with neurodevelopmental measures of adaptive behavior. These miRNAs have high specificity and cross-validated utility as a potential screening tool for ASD.Electronic supplementary materialThe online version of this article (doi:10.1186/s12887-016-0586-x) contains supplementary material, which is available to authorized users.
We previously performed a genome-wide linkage scan in Portuguese schizophrenia families that identified a risk locus on chromosome 5q31-q35. This finding was supported by metaanalysis of 20 other schizophrenia genome-wide scans that identified 5q23.2-q34 as the second most compelling susceptibility locus in the genome. In the present report, we took a two-stage candidate gene association approach to investigate a group of gamma-aminobutyric acid (GABA) A receptor subunit genes (GABRA1, GABRA6, GABRB2, GABRG2, and GABRP) within our linkage peak. These genes are plausible candidates based on prior evidence for GABA system involvement in schizophrenia. In the first stage, associations were detected in a Portuguese patient sample with single nucleotide polymorphisms (SNPs) and haplotypes in GABRA1 (P ¼ 0.00062-0.048), GABRP (P ¼ 0.0024-0.042), and GABRA6 (P ¼ 0.0065-0.0088). The GABRA1 and GABRP findings were replicated in the second stage in an independent German family-based sample (P ¼ 0.0015-0.043). Supportive evidence for association was also obtained for a previously reported GABRB2 risk haplotype. Exploratory analyses of the effects of associated GABRA1 haplotypes on transcript levels found altered expression of GABRA6 and coexpressed genes of GABRA1 and GABRB2. Comparison of transcript levels in schizophrenia patients and unaffected siblings found lower patient expression of GABRA6 and coexpressed genes of GABRA1. Interestingly, the GABRA1 coexpressed genes include synaptic and vesicle-associated genes previously found altered in schizophrenia prefrontal cortex. Taken together, these results support the involvement of the chromosome 5q GABA A receptor gene cluster in schizophrenia, and suggest that schizophrenia-associated haplotypes may alter expression of GABA-related genes.
Schizophrenia is a common, multigenic psychiatric disorder. Linkage studies, including a recent meta-analysis of genome scans, have repeatedly implicated chromosome 8p12-p23.1 in schizophrenia susceptibility. More recently, significant association with a candidate gene on 8p12, neuregulin 1 (NRG1), has been reported in several European and Chinese samples. We investigated NRG1 for association in schizophrenia patients of Portuguese descent to determine whether this gene is a risk factor in this population. We tested NRG1 markers and haplotypes for association in 111 parent-proband trios, 321 unrelated cases, and 242 control individuals. Associations were found with a haplotype that overlaps the risk haplotype originally reported in the Icelandic population ('Hap ICE '), and two haplotypes located in the 3 0 end of NRG1 (all Po0.05). However, association was not detected with Hap ICE itself.Comparison of NRG1 transcript expression in peripheral leukocytes from schizophrenia patients and unaffected siblings identified 3.8-fold higher levels of the SMDF variant in patients (P ¼ 0.039). Significant positive correlations (Po0.001) were found between SMDF and HRGbeta 2 expression and between HRG-gamma and ndf43 expression, suggesting common transcriptional regulation of NRG1 variants. In summary, our results suggest that haplotypes across NRG1 and multiple NRG1 variants are involved in schizophrenia.
Wastewater surveillance of SARS-CoV-2 has become an attractive tool for combating the spread of COVID-19 by assessing the presence or levels of the virus shed in a population. However, the methods to quantify viral RNA and to link those quantities to the level of infection within the community vary. In this study, we sought to identify and optimize scalable methods for recovery of viral nucleic acids from wastewater and attempted to use a constitutive member of the gut virome, human-specific crAssphage, to help account for unknown levels of SARS-CoV-2 decay and dilution in the wastewater infrastructure. Results suggest that ultracentrifugation of a small volume of wastewater through a 50% sucrose cushion followed by total nucleic acid extraction yielded quantifiable virus in an area with a modest number of COVID-19 cases. Further, the ratio of log10(SARS-CoV-2):log10(crAssphage) appears to be associated with the cumulative incidence of COVID-19 in the Syracuse, NY area. In areas where ultracentrifuges are available, these methods may be used to link SARS-CoV-2 quantities in wastewater to levels of transmission within communities with sewer service.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.