Alternative splicing of pre-mRNA is a prominent mechanism to generate
protein diversity, yet its regulation is poorly understood. We demonstrated a
direct role for histone modifications in alternative splicing. We found
distinctive histone modification signatures that correlate with the splicing
outcome in a set of human genes, and modulation of histone modifications causes
splice site switching. Histone marks affect splicing outcome by influencing the
recruitment of splicing regulators via a chromatin-binding protein. These
results outline an adaptor system for the reading of histone marks by the
pre-mRNA splicing machinery.
Pattern recognition receptors (PRRs) including Toll-like receptors (TLRs) and RIG like helicase (RLH) receptors are involved in innate immune antiviral responses. Here we show that nucleotide-binding oligomerization domain 2 (NOD2) can also function as a cytoplasmic viral PRR by triggering activation of interferon regulatory factor-3 (IRF3) and production of interferon-β (IFN). Following recognition of viral ssRNA genome, NOD2 utilized the adaptor protein MAVS (mitochondrial antiviral signaling) to activate IRF3. NOD2-deficient mice failed to produce IFN efficiently and exhibited enhanced susceptibility to virus-induced pathogenesis. Thus, the function of NOD2 as a viral PRR highlights the important role of NOD2 in host antiviral defense mechanisms.
Checkpoint genes cause cell cycle arrest when DNA is damaged or DNA replication is blocked. Although a human homolog of Chk1 (hChk1) has recently been reported to be involved in the DNA damage checkpoint through phosphorylation of Cdc25A, B, and C, it is not known at which phase(s) of the cell cycle hChk1 functions and how hChk1 causes cell cycle arrest in response to DNA damage. In the present study, we demonstrate that in normal human ®broblasts (MJ90), hChk1 is expressed speci®cally at the S to M phase of the cell cycle at both the RNA and protein levels and that it is localized to the nucleus at this time. hChk1 activity, as determined by phosphorylation of Cdc25C, is readily detected at the S to M phase of the cell cycle, and DNA damage induced by UV or ionizing radiation does not enhance the expression of hChk1 or its activity. Furthermore, hChk1 exists in an active form at the S to M phase in ®broblasts derived from patients with ataxia telangiectasia (AT) which lack the functional AT mutated (ATM) gene product, suggesting that hChk1 expression is independent of functional ATM. Taken together with the ®ndings that phosphorylation of Cdc25C on serine 216 is increased at the S to M phase, it is suggested that at this particular phase of the cell cycle, even in the absence of DNA damage, hChk1 phosphorylates Cdc25C on serine 216, which is considered to be a prerequisite for the G2/M checkpoint. Thus, hChk1 may play an important role in keeping Cdc25C prepared for responding to DNA damage by phosphorylating its serine residue at 216 during the S to M phase.
We examined the effects of increased levels of thioredoxin 1 (Trx1) on resistance to oxidative stress and aging in transgenic mice overexpressing Trx1 [Tg(TRX1)(+/0)]. The Tg(TRX1)(+/0) mice showed significantly higher Trx1 protein levels in all the tissues examined compared with the wild-type littermates. Oxidative damage to proteins and levels of lipid peroxidation were significantly lower in the livers of Tg(TRX1)(+/0) mice compared with wild-type littermates. The survival study demonstrated that male Tg(TRX1)(+/0) mice significantly extended the earlier part of life span compared with wild-type littermates, but no significant life extension was observed in females. Neither male nor female Tg(TRX1)(+/0) mice showed changes in maximum life span. Our findings suggested that the increased levels of Trx1 in the Tg(TRX1)(+/0) mice were correlated to increased resistance to oxidative stress, which could be beneficial in the earlier part of life span but not the maximum life span in the C57BL/6 mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.