Multidrug resistance proteins (MRPs) are members of the C family of a group of proteins named ATP-binding cassette (ABC) transporters. These ABC transporters together form the largest branch of proteins within the human body. The MRP family comprises of 13 members, of which MRP1 to MRP9 are the major transporters indicated to cause multidrug resistance in tumor cells by extruding anticancer drugs out of the cell. They are mainly lipophilic anionic transporters and are reported to transport free or conjugates of glutathione (GSH), glucuronate, or sulphate. In addition, MRP1 to MRP3 can transport neutral organic drugs in free form in the presence of free GSH. Collectively, MRPs can transport drugs that differ structurally and mechanistically, including natural anticancer drugs, nucleoside analogs, antimetabolites, and tyrosine kinase inhibitors. Many of these MRPs transport physiologically important anions such as leukotriene C4, bilirubin glucuronide, and cyclic nucleotides. This review focuses mainly on the physiological functions, cellular resistance characteristics, and probable in vivo role of MRP1 to MRP9.
The adenosine tri-phosphate binding cassette (ABC) transporters are one of the largest transmembrane gene families in humans. The ABC transporters are present in a number of tissues, providing protection against xenobiotics and certain endogenous molecules. Unfortunately, their presence produces suboptimal chemotherapeutic outcomes in cancer patient tumor cells. It is well established that they actively efflux antineoplastic agents from cancer cells, producing the multidrug resistance (MDR) phenotype. The inadequate response to chemotherapy and subsequent poor prognosis in cancer patients can be in part the result of the clinical overexpression of ABC transporters. In fact, one of the targeted approaches for overcoming MDR in cancer cells is that directed towards blocking or inhibiting ABC transporters. Indeed, for almost three decades, research has been conducted to overcome MDR through pharmacological inhibition of ABC transporters with limited clinical success. Therefore, contemporary strategies to identify or to synthesize selective "resensitizers" of ABC transporters with limited nonspecific toxicity have been undertaken. Innovative approaches en route to understanding specific biochemical role of ABC transporters in MDR and tumorigenesis will prove essential to direct our knowledge towards more effective targeted therapies. This review briefly discusses the current knowledge regarding the clinical involvement of ABC transporters in MDR to antineoplastic drugs and highlights approaches undertaken so far to overcome ABC transporter-mediated MDR in cancer.
A panel of clinically used tyrosine kinase inhibitors was compared and nilotinib was found to most potently sensitize specific anticancer agents by blocking the functions of ABCB1/P-glycoprotein, ABCG2/BCRP and ABCC10/MRP7 transporters involved in multi-drug resistance. Nilotinib appreciably enhanced the antitumor response of 1) paclitaxel in the ABCB1- and novel ABCC10-xenograft models, and 2) doxorubicin in a novel ABCG2-xenograft model. With no apparent toxicity observed in the above models, nilotinib attenuated tumor growth synergistically and increased paclitaxel concentrations in ABCB1-overexpressing tumors. The beneficial actions of nilotinib warrant consideration as viable combinations in the clinic with agents that suffer from MDR-mediated insensitivity.
In recent years, a number of TKIs (tyrosine kinase inhibitors) targeting epidermal growth factor receptor (EGFR) family have been synthesized and some have been approved for clinical treatment of cancer by the FDA. We recently reported a new pharmacological action of the 4-anilinoquinazoline derived EGFR TKIs, such as lapatinib (Tykerb®) and erlotinib (Tarceva®), which significantly affect the drug resistance patterns in cells expressing the multidrug resistance (MDR) phenotype. Previously, we showed that lapatinib and erlotinib could inhibit the drug efflux function of P-glycoprotein (P-gp, ABCB1) and ABCG2 transporters. In this study, we determined if these TKIs have the potential to reverse MDR due to the presence of the multidrug resistance protein 7 (MRP7, ABCC10). Our results showed that lapatinib and erlotinib dose-dependently enhanced the sensitivity of MRP7-transfected HEK293 cells to several established MRP7 substrates, specifically docetaxel, paclitaxel, vinblastine and vinorelbine, whereas there was no or a lesser effect on the control vector transfected HEK293 cells. [3H]-paclitaxel accumulation and efflux studies demonstrated that lapatinib and erlotinib increased the intracellular accumulation of [3H]-paclitaxel and inhibited the efflux of [3H]-paclitaxel from MRP7 transfected cells but not in the control cell line. Lapatinib is a more potent inhibitor of MRP7 than erlotinib. In addition, the Western blot analysis revealed that both lapatinib and erlotinib did not significantly affect MRP7 expression. We conclude that the EGFR TKIs, lapatinib and erlotinib reverse MRP7-mediated MDR through inhibition of the drug efflux function, suggesting that an EGFR TKI based combinational therapy may be applicable for chemotherapeutic practice clinically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.