Vehicles driving on the road continuously suffer low-frequency and high-intensity road excitation, which can cause the occupant feelings of tension and dizziness. To solve this problem, a three-degree-of-freedom vehicle suspension system model including vehicle seat is established and a linear function equivalent excitation method is proposed. The optimization of the random excitation is transformed into the optimization of constant force in a discrete time interval, which introduces the adaptive weighted particle swarm optimization algorithm to optimize the delay and feedback gain parameters in the feedback control of time delay. In this paper, the stability switching theory is used for the first time to analyze the stability interval of 3-DOF time-delay controlled active suspension, which ensures the stability of the control system. The numerical simulation results show that the algorithm can reduce vertical passenger acceleration and vehicle acceleration, respectively, by 13.63% and 28.38% on average, and 29.99% and 47.23% on random excitation, compared with active suspension and passive suspension based on inverse control. The effectiveness of the method to suppress road random interference is verified, which provides a theoretical reference for further study of suspension performance optimization with time-delay control.
The existing available research outcomes on vibration attenuation control for time-delay feedback indicate that, for the delay dynamic vibration absorber with fixed time-delay control parameters, under harmonic excitation, a good vibration attenuation control effect occurs on the vibration of the main system. However, the effect is not obvious for complex excitation. Aiming at the above problems, in a short time interval, a harmonic excitation with the same displacement size as the complex excitation was established. Then, by calculating its equivalent amplitude and equivalent frequency, a harmonic equivalent method for complex excitation was proposed in this paper. The time-delay parameters were adjusted according to the equivalent frequency of harmonic equivalent excitation in real time; therefore, a good vibration attenuation control effect was obtained through the delay dynamic vibration absorber in the discrete time interval. In this paper, research on a time-varying delay dynamic vibration absorber was conducted by taking the two-degree-of-freedom vibration system with a delay dynamic vibration absorber as an example. The simulation results show that the proposed control method can reduce the vibration of the main system by about 30% compared with the passive vibration absorber. This can obviously improve the performance of the time-delay dynamic vibration absorber. It provides a new technical idea for the design of vehicle active frame system.
With the application of an active control unit in the suspension system, the phenomenon of time delay has become an important factor in the control system. Aiming at the application of time-delay feedback control in vehicle active suspension systems, this paper has researched the dynamic behavior of semivehicle four-degree-of-freedom structure including an active suspension with double time-delay feedback control, focusing on analyzing the vibration response and stability of the main vibration system of the structure. The optimal objective function is established according to the amplitude-frequency characteristics of the system, and the optimal time-delay control parameters are obtained by using the particle swarm optimization algorithm. The stability for active suspension with double time-delay feedback control by frequency-domain scanning method is analyzed, and the simulation model of active suspension with double time delay based on feedback control is finally established. The simulation results show that the active suspension with double time-delay feedback control could reduce the body’s vertical vibration acceleration, pitch acceleration, and other indicators significantly, whether under harmonic excitation or random excitation. So, it is indicating that the active suspension with double time-delay feedback control has a better control effect in improving the ride comfort of the car, and it has important reference value for further research on suspension performance optimization.
Time-delay feedback control can effectively broaden the damping frequency band and improve the damping efficiency. However, the existing time-delay feedback control strategy has no obvious effect on multi-frequency random excitation vibration reduction control. That is, when the frequency of external excitation is more complicated, there is no better way to obtain the best time-delay feedback control parameters. To overcome this issue, this paper is the first work of proposing an optimal calculation method that introduces stochastic excitation into the process of solving the delay feedback control parameters. It is a time-delay control parameter with a better damping effect for random excitation. In this paper, a 2 DOF one-quarter vehicle suspension model with time-delay is studied. First, the stability interval of time-delay feedback control parameters is solved by using the Lyapunov stability theory. Second, the optimal control parameters of the time-delay feedback control under random excitation are solved by particle swarm optimization (PSO). Finally, the simulation models of a one-quarter vehicle suspension simulation model are established. Random excitation and harmonic excitation are used as inputs. The response of the vehicle body under the frequency domain damping control method and the proposed control method is compared and simulated. To make the control precision higher and the solution speed faster, this paper simulates the model by using the precise integration method of transient history. The simulation results show that the acceleration of the vehicle body in the proposed control method is 13.05% less than the passive vibration absorber under random excitation. Compared with the time-delay feedback control optimized by frequency response function, the damping effect is 12.99%. The results show that the vibration displacement, vibration velocity, and vibration acceleration of the vehicle body are better than the frequency domain function optimization method, whether it is harmonic excitation or random excitation. The ride comfort of the vehicle is improved obviously. It provides a valuable tool for time-delay vibration reduction control under random excitation.
Suspension system is one of the important parts of a vehicle, which is used to buffer the impact of uneven road to the body and passengers, so the suspension system has an important impact on the safety and ride comfort of the vehicle. In order to improve the safety and comfort of passengers and vehicles, in this paper a five-degree-of-freedom half car model is established, and the uncertainty of the model and the time-delay of the control are considered. The dynamic response of vehicle body acceleration root mean square, passenger acceleration root mean square, displacement root mean square and vehicle body pitch acceleration root mean square are selected as optimization objectives. The time-delay control parameters are determined by chaos particle swarm optimization algorithm. The time-delay stability of the suspension control system is analyzed by frequency-domain scanning method to ensure the stability of the time-delay control system. Finally, by establishing the simulation model of the active suspension system with double time-delay feedback control, the response characteristics of the suspension system with double time-delay active feedback control to simple harmonic excitation and random excitation input are analyzed. The results show that under the premise of ensuring the system stability, the active suspension system with double time-delay feedback control has good and obvious controlling and damping effect on the body and seats.
The hydraulic accumulator has the advantages of high power density, fast response, stable operation and high cost performance. However, compared with the electric energy storage method, the hydraulic accumulator has low energy density and large pressure fluctuation while absorbing and discharging energy, which severely limits its application in hydraulic excavators. To improve the potential energy loss of the boom during the lowering process, an electro-hydraulic drive and energy recovery system for excavator booms (EHDR-EEB) based on a battery and accumulator is proposed. As a result, a simulation model of the electro-hydraulic drive and energy management strategy of a 1.6 t pure electric hydraulic excavator is built to investigate the energy regeneration and utilization. The simulation outcomes show that the potential energy recovery rate is as high as 92%. This research on EHDR-EEB makes a significant contribution to the economic improvement of electric hydraulic excavators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.