Using predictive nonlinear optimal control, this model examines the output power of a three-phase brushless DC motor (BLDC) drive to ensure that it is stabilized (PNOC). A BLDC is a kind of electric motor that is used in a variety of applications and is one of the models of electric motors that are utilized in constant speed applications. In this motor, the movable component of the rotor created torque and the rotor rotated in a position of low reluctance; the location of the rotor is determined by the motor’s maximum inductance value. The BLDC drive controls the motor via the converter circuit, and the converter circuit ensures that the motor receives the appropriate output power. The project manager should have a thorough discussion with the team about the demagnetization of the malfunctioning BLDC motor before beginning this job. It is possible to model a machine using many existing technologies, such as electrical equivalent circuit diagram (EEC), which are based on a number of assumptions that make the analysis process or the analysis approach simpler. Despite numerical methodologies, these approach scenarios give frequency domain loop (FDL) precision frequency domain, using a suitable weight strategy to deliver high power solution creation (NM). The purpose of this essay is to integrate these two technologies in order to make contributions via the development of a new hybrid EEC-FDL model closed-loop brushless DC motor. PNOC is a driving system that uses predictive nonlinear optimal control (PNOC). The generated model is subjected to simulations under both healthy and incorrect settings, respectively. MATLAB software is utilized to construct the simulation of the control circuit, and simulation outputs are validated by experimental findings. Predictive nonlinear optimal control (PNOC) is employed to eliminate torque ripple and improve system stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.