Factor VIII (FVIII) circulates in plasma as a non-covalent complex with von Willebrand factor (VWF), a large multimeric adhesive glycoprotein. VWF serves as a carrier for FVIII and is thought to stabilize FVIII. The interaction between the two proteins was studied by binding purified human 125I-FVIII to VWF which was coated on a solid matrix. Experiments employing isolated heavy and light chains of FVIII and monoclonal antibodies indicated that binding occurred through the carboxyterminal 80kDa light chain of factor VIII. Treatment of VWF-bound 125I-FVIII with thrombin resulted in the release of a light chain-derived 70kDa fragment and a heavy chain-derived 50kDa fragment. A 42kDa heavy chain-derived fragment was found in the fraction which remained bound to VWF. Treatment with factor Xa (FXa) resulted in the release of 63, 50, 45, and 42kDa fragments. No phospholipids were required for proteolysis of FVIII by either of these enzymes. In solution, the activation of FVIII by FXa, but not by thrombin, was inhibited by VWF. Neither activation, nor cleavage or release from VWF were observed when FVIII was incubated with factor IXa. Activation of FVIII was parallelled by its release from VWF. We conclude that the thrombin-activated form of FVIII consists of a complex between the 70kDa and 50kDa fragments. Inactivation of FVIII by activated protein C (APC) was inhibited when FVIII was complexed to VWF. This protective effect of VWF was abolished upon activation of FVIII and its subsequent release from VWF.In order to locate the binding site for FVIII on the VWF molecule, we digested VWF with Staphylococcal V8 protease (Sp). Digestion products were isolated with Mono Q ion-exchange chromatography and identified as Spl (39 kDa), SpII dimers (220 kDa) and Spill dimers (a triplet ranging from 210-280 kDa) by their molecular weight and chromatographic behaviour (J.-P. Girma et al.. Biochemistry 1986, 25:3156-3163). Purified VWF or digestion products were spotted on nitrocellulose paper, followed by blocking with an albumin solution. Binding of FVIII was studied by incubating the filters with 125I-FVIII, followed by autoradiography. Fifty ng of VWF was sufficient in order to detect FVIII binding. No binding was observed to partially reduced dimeric undigested VWF. Of the isolated digestion products, only the SpIII dimer was able to bind 125I-FVIII. After Western blotting of VWF-fragments from SDS-polyacrylamide gels, 125I-FVIII bound only to the bands which represented SpIII. Therefore, the domain on VWF responsible for the binding of FVIII seems to be located on its aminoterminal SpIII fragment. The integrity of internal disulfide bonds and dimerisation of VWF are required for FVIII binding.
With cartilage slices from calf ribs, cGMP as well as cAMP accelerate dose-dependently and specifically label rates of Ch-4-,-6-S protein; they slightly elevate rates of anaerobic glycolysis dose-independently and unspecifically, similar to their 5-monophosphate compounds. cAMP, but not cGMP, slightly stimulates labeling of total protein dose-dependently. Guanosine and adenosine (as well as adenine) accelerate more significantly all three anabolic processes in the order Ch-4-,-6-S protein formation greater than or equal to total protein labeling greater than anaerobic glycolysis. Acceleration of some of the processes rises further after adding theophylline or SQ 20.009, depending on the nucleoside used. diBu-cAMP (but not 8-Br-cAMP) stimulates the three processes more than cAMP; diBu-cGMP and 8-Br-cGMP alone increase the labeling rates of protein more than cGMP, cCMP and cIMP slightly accelerate at least one of the three processes dose-independently and unspecifically, similar to their 5-monophosphate compounds. cUMP was almost inactive. The results point to specific and unspecific effects of cGMP similar or different to those of cAMP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.