Background: Chickpea is the third major pulse produced globally, with 11.6 million tonnes produced per annum (Merga and Haji, 2019). Sugar alcohols, inulin, starch are all prebiotic carbohydrates found in chickpeas (Johnson et al., 2020). Near-Infrared (NIR) spectroscopy is a non-destructive, versatile and powerful analytical technique. Methods: Spectral data obtained from NIR spectroscopy requires application of various techniques to extract useful information from spectral data which is further used for building various models for prediction of physical or chemical components presents in agricultural crops. The main aim of this study is to apply various machine learning algorithms especially effective in predicting sugar concentration in chickpea. Sugar prediction models are developed using Linear Regression (LR), Artificial Neural Network (ANN), Random Forest (RF), Support Vector Regression (SVR) and Decision Tree Regression (DTR) algorithms. Performance of the models is evaluated using measures namely, Root Mean Square Error (RMSE), Residual Standard Error (RSE), Coefficient of Determination (R2) and Adjusted Coefficient of Determination (adjusted R2). Result: It was observed that, RF outperformed all other models in terms of accuracy for predicting sugar component from preprocessed spectra, with RMSE, RSE, R2 and adjusted R2 values of 0.054, 0.062, 0.954 and 0.937, respectively. The accuracy of the ANN model is similar to that of the RF, with minor differences in RMSE, RSE, R2 and adjusted R2 , values of 0.057, 0.067, 0.952 and 0.935.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.