We propose interspecies quantitative structure-activity-activity relationships (QSAARs), that is, QSARs with descriptors, to estimate species-specific acute aquatic toxicity. Using training datasets consisting of more than 100 aromatic amines and phenols, we found that the descriptors that predicted acute toxicities to fish (Oryzias latipes) and algae were daphnia toxicity, molecular weight (an indicator of molecular size and uptake) and selected indicator variables that discriminated between the absence or presence of various substructures. Molecular weight and the selected indicator variables improved the goodness-of-fit of the fish and algae toxicity prediction models. External validations of the QSAARs proved that algae toxicity could be predicted within 1.0 log unit and revealed structural profiles of outlier chemicals with respect to fish toxicity. In addition, applicability domains based on leverage values provided structural alerts for the predicted fish toxicity of chemicals with more than one hydroxyl or amino group attached to an aromatic ring, but not for fluoroanilines, which were not included in the training dataset. Although these simple QSAARs have limitations, their applicability is defined so clearly that they may be practical for screening chemicals with molecular weights of ≤364.9.
In addition to molecular structure profiles, descriptors based on physicochemical properties are useful for explaining the eco-toxicities of chemicals. In a previous study we reported that a criterion based on the difference between the partition coefficient (log POW) and distribution coefficient (log D) values of chemicals enabled us to identify aromatic amines and phenols for which interspecies relationships with strong correlations could be developed for fish-daphnid and algal-daphnid toxicities. The chemicals that met the log D-based criterion were expected to have similar toxicity mechanisms (related to membrane penetration). Here, we investigated the applicability of log D-based criteria to the eco-toxicity of other kinds of chemicals, including aliphatic compounds. At pH 10, use of a log POW - log D > 0 criterion and omission of outliers resulted in the selection of more than 100 chemicals whose acute fish toxicities or algal growth inhibition toxicities were almost equal to their acute daphnid toxicities. The advantage of log D-based criteria is that they allow for simple, rapid screening and prioritizing of chemicals. However, inorganic molecules and chemicals containing certain structural elements cannot be evaluated, because calculated log D values are unavailable.
The validity of chemical reaction mechanistic domains defined by skin sensitisation in the Quantitative Structure-Activity Relationship (QSAR) ecotoxicity system, KAshinhou Tools for Ecotoxicity (KATE), March 2009 version, has been assessed and an external validation of the current KATE system carried out. In the case of the fish end-point, the group of chemicals with substructures reactive to skin sensitisation always exhibited higher root mean square errors (RMSEs) than chemicals without reactive substructures under identical C- or log P-judgements in KATE. However, in the case of the Daphnia end-point this was not so, and the group of chemicals with reactive substructures did not always have higher RMSEs: the Schiff base mechanism did not function as a high error detector. In addition to the RMSE findings, the presence of outliers suggested that the KATE classification rules needs to be reconsidered, particularly for the amine group. Examination of the dependency of the organism on the toxic action of chemicals in fish and Daphnia revealed that some of the reactive substructures could be applied to the improvement of the KATE system. It was concluded that the reaction mechanistic domains of toxic action for skin sensitisation could provide useful complementary information in predicting acute aquatic ecotoxicity, especially at the fish end-point.
We propose a three-step strategy that uses structural and physicochemical properties of chemicals to predict their 72 h algal growth inhibition toxicities against Pseudokirchneriella subcapitata. In Step 1, using a log D-based criterion and structural alerts, we produced an interspecies QSAR between algal and acute daphnid toxicities for initial screening of chemicals. In Step 2, we categorized chemicals according to the Verhaar scheme for aquatic toxicity, and we developed QSARs for toxicities of Class 1 (non-polar narcotic) and Class 2 (polar narcotic) chemicals by means of simple regression with a hydrophobicity descriptor and multiple regression with a hydrophobicity descriptor and a quantum chemical descriptor. Using the algal toxicities of the Class 1 chemicals, we proposed a baseline QSAR for calculating their excess toxicities. In Step 3, we used structural profiles to predict toxicity either quantitatively or qualitatively and to assign chemicals to the following categories: Pesticide, Reactive, Toxic, Toxic low and Uncategorized. Although this three-step strategy cannot be used to estimate the algal toxicities of all chemicals, it is useful for chemicals within its domain. The strategy is also applicable as a component of Integrated Approaches to Testing and Assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.