Although sorghum is a crop grown under harsh environments, its productivity is adversely affected by various abiotic stresses including drought, temperature extremes, low fertility, and mineral toxicity among others. In recent years a large number of genetic and genomic resources have become available in sorghum, which provide researchers opportunities to relate sequence variations with phenotypic traits of interest and their utilization in sorghum improvement programs. The application of the molecular marker and genomic technologies has shown promise for efficient breeding. However, very few successful examples are available in the public domain of research in this direction. Some of these successes specifically related to application of molecular marker technologies for improving abiotic stresses are explained in this chapter. With recent advances in next-generation sequencing technologies and high-throughput phenotyping platforms/technologies, utilizing the new/advanced mapping populations such as nested-association mapping (NAM), backcross-derived NAM has shown great potential. These recent advancements will be the drivers for integration of genomics technologies in routine breeding programs in the immediate future.
Horsegram is a grain legume with excellent nutritional and remedial properties and good climate resilience, able to adapt to harsh environmental conditions. Here, we used a combination of short- and long-read sequencing technologies to generate a genome sequence of 279.12Mb, covering 83.53% of the estimated total size of the horsegram genome, and we annotated 24,521 genes. De novo prediction of DNA repeats showed that approximately 25.04% of the horsegram genome was made up of repetitive sequences, the lowest among the legume genomes sequenced so far. The major transcription factors identified in the horsegram genome were bHLH, ERF, C2H2, WRKY, NAC, MYB, and bZIP, suggesting that horsegram is resistant to drought. Interestingly, the genome is abundant in Bowman–Birk protease inhibitors (BBIs), which can be used as a functional food ingredient. The results of maximum likelihood phylogenetic and estimated synonymous substitution analyses suggested that horsegram is closely related to the common bean and diverged approximately 10.17 million years ago. The double-digested restriction associated DNA (ddRAD) sequencing of 40 germplasms allowed us to identify 3,942 high-quality SNPs in the horsegram genome. A genome-wide association study with powdery mildew identified 10 significant associations similar to the MLO and RPW8.2 genes. The reference genome and other genomic information presented in this study will be of great value to horsegram breeding programs. In addition, keeping the increasing demand for food with nutraceutical values in view, these genomic data provide opportunities to explore the possibility of horsegram for use as a source of food and nutraceuticals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.