Flagella were prepared and purified in a relatively intact form from bacterial lysates. Immunochemical tests showed that over 95% of the protein in the final preparation consisted of flagellar antigen. These flagella are more stable to thermal denaturation than flagella filaments obtained by shearing. Their thermal properties more closely resemble those of flagella in the native state on bacteria. The presence of the hook structure is responsible for this extra stability.
A method for preparing bacterial flagellar hook structures is described. The method involves isolating intact flagella from a mutant which makes thermally labile flagellar filaments and heat-treating them to disaggregate the filament preferentially. The resulting hook preparation can be separated and purified by velocity and isopycnic centrifugation. The purified hooks sediment at a relative S value of 77. On acrylamide gel electrophoresis in sodium dodecyl sulfate, they show one major and a number of minor protein bands. The purified hooks can be used to immunize rabbits, and the resulting antiserum is hook-specific. These results support the notion that hooks are composed of a protein that differs from flagellin.
A relatively simple immunochemical procedure for estimating flagellar protein was developed. This procedure involved measuring the binding of purified, radioactively labeled, antiflagellar antibodies to bacteria. The assay was used to determine the requirements for ribonucleic acid (RNA) and protein synthesis during flagellar regeneration in Bacillus subtilis. Immediate inhibition of flagella development was observed when chloramphenical or puromycin was added to cells. This inhibition indicated the absence of a large pool of flagella precursors that could be assembled in the absence of protein synthesis. When the cells were starved for uracil or treated with actinomycin D to inhibit RNA synthesis, the ability of the cells to regenerate flagella decayed with a half-life of 5.5 min. When B. subtilis auxotrophs were starved for tryptophan, they continued to synthesize flagella, although this process was also inhibited by actinomycin D. On the basis of these results, we concluded that (i) the system involved in flagellar regeneration does not have unusual metabolic stability, (ii) regeneration requires both concomitant protein and RNA syntheses, and (iii) B. subtilis continues to synthesize messenger RNA during tryptophan starvation.
Lysozyme, used to prepare osmotically fragile cells, combines with ribosomal subunits unless salt is present in excess of 50 mM. The binding of lysozyme to precursor ribonucleoprotein particles can result in their conversion to particles which sediment as mature ribosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.