The investigation of hyperspectral data from the Mars Reconnaissance Orbiter CompactReconnaissance Imaging Spectrometer for Mars (CRISM) and the Observatoire pour la Minéralogie, L'Eau, les Glaces et l'Activitié (OMEGA) on Mars Express has revealed an increasingly diverse suite of minerals present on the Martian surface. A revised set of 60 spectral parameters derived from corrected spectral reflectance at key wavelengths in CRISM targeted observations and designed to capture the known diversity of surface mineralogy on Mars is presented here as "summary products." Some of the summary products have strong heritage to OMEGA spectral parameter calculations; this paper also presents newly derived parameters that highlight locations with more recently discovered spectral signatures. Type locations for the diversity of currently identified mineral spectral signatures have been compiled into a library presented in this work. Our analysis indicates that the revised set of summary products captures the known spectral diversity of the surface, and successfully highlights and differentiates between locations with differing spectral signatures. The revised spectral parameter calculations and related products provide a useful tool for scientific interpretation and for future mission landing site selection and operations.
[1] A suite of remote sensing data is used to evaluate both geomorphology and mineralogy of the candidate landing sites for the 2007 Phoenix Mission. Three candidate landing site boxes are situated in the northern plains of Mars on the distal flank of Alba Patera in the region from 67°N to 72°N and from $230°E to 260°E. Geomorphology is mapped at subkilometer spatial scales using Thermal Emission Imaging System (THEMIS) visible and Mars Orbiter Laser Altimeter (MOLA) topographic data, supplemented by images from the High-Resolution Imaging Science Experiment (HiRISE) and Context Imager (CTX). Mineralogy and spectral properties are examined using Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) visible and near-infrared multispectral mapping and targeted hyperspectral data at $200 and $20 m/pixel, respectively. Geomorphic mapping supports the idea that terrains along the boundary between the Amazonian Scandia region and Vastitas Borealis marginal geologic units have undergone extensive modification. Intercrater plains are disrupted to form mesas and interlocking blocks, while irregular depressions and knobby terrain are consistent with erosion/subsidence and local deposition. Despite the varied morphology, the present-day surface is nearly homogeneous with spectral signatures dominated by nanophase iron oxides and basaltic sand and rocks, similar to that of the Gusev crater plains at the Mars Exploration Rover (MER) landing site. The compilation of geomorphic and spectral information for the candidate Phoenix landing sites provides a framework for the mission's in situ observations to be extrapolated to the northern plains as a whole.
This list includes many of the hundreds of current students and scientists who have made significant contributions to Mars Polar Science in the past decade. Every name listed represents a person who asked to join the white paper or agreed to be listed and provided some comments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.