The idea that cellular stress (including that precipitated by stretch), plays a significant role in the mechanisms initiating parturition, has gained considerable traction over the last decade. One key consequence of this cellular stress is the increased production of Danger Associated Molecular Patterns (DAMPs). This diverse family of molecules are known to initiate inflammation through their interaction with Pattern Recognition Receptors (PRRs) including, Toll-like receptors (TLRs). TLRs are the key innate immune system surveillance receptors that detect Pathogen Associated Molecular Patterns (PAMPs) during bacterial and viral infection. This is also seen during Chorioamnionitis. The activation of TLR commonly results in the activation of the pro-inflammatory transcription factor Nuclear Factor Kappa-B (NF-kB) and the downstream production of pro-inflammatory cytokines. It is thought that in the human fetal membranes both DAMPs and PAMPs are able, perhaps via their interaction with PRRs and the induction of their downstream inflammatory cascades, to lead to both tissue remodeling and weakening. Due to the high incidence of infection-driven Pre-Term Birth (PTB), including those that have preterm Premature Rupture of the Membranes (pPROM), the role of TLR in fetal membranes with Chorioamnionitis has been the subject of considerable study. Most of the work in this field has focused on the effect of PAMPs on whole pieces of fetal membrane and the resultant inflammatory cascade. This is important to understand, in order to develop novel prevention, detection, and therapeutic approaches, which aim to reduce the high number of mothers suffering from infection driven PTB, including those with pPROM. Studying the role of sterile inflammation driven by these endogenous ligands (DAMPs) activating PRRs system in the mesenchymal and epithelial cells in the amnion is important. These cells are key for the maintenance of the integrity and strength of the human fetal membranes. This review aims to (1) summarize the knowledge to date pertinent to the role of DAMPs and PRRs in fetal membrane weakening and (2) discuss the clinical potential brought by a better understanding of these pathways by pathway manipulation strategies.
A proinflammatory response driven by high‐mobility group box 1 (HMGB1) is important for the success of both the early stages of pregnancy and parturition initiation. However, the tight regulation of HMGB1 within these two stages is critical, as increased HMGB1 can manifest into pregnancy‐related pathologies. Although during the early stages of pregnancy HMGB1 is critical for the development and implantation of the embryo, and uterine decidualization, high levels within the uterine cavity have been linked to pregnancy failure. In addition, chronic inflammation, resultant from increased HMGB1 within the maternal circulation and gestational tissues, also increases the risk for preterm labor, preterm birth, or infant mortality. Due to the link between HMGB1 and several pregnancy pathologies, the possibility of leveraging HMGB1 as a biomarker has been assessed. However, data are limited that demonstrate how known HMGB1 inhibitors could reduce inflammation within pregnancy. Thus, further research is warranted to improve our understanding of the potential of HMGB1 as a therapeutic target to reduce inflammation within pregnancy. This review aims to describe what is understood about the role of HMGB1 that drives inflammation throughout pregnancy and highlight its potential as a biomarker and therapeutic target within this context.
Nuclear-factor-E2-related factor 2 (Nrf2) is a key transcription factor for the regulation of cellular responses to cellular stress and inflammation, and its expression is significantly lower after spontaneous term labor in human fetal membranes. Pathological induction of inflammation can lead to adverse pregnancy outcomes such as pre-eclampsia, preterm labor, and fetal death. As stretch forces are known to act upon the fetal membranes in utero, we aimed to ascertain the effect of stretch on Nrf2 to increase our understanding of the role of this stimulus on cells of the amnion at term. Our results indicated a significant reduction in Nrf2 expression in stretched isolated human amnion epithelial cells (hAECs) that could be rescued with sulforaphane treatment. Downregulation of Nrf2 as a result of stretch was accompanied with activation of proinflammatory nuclear factor-kB (NF-kB) and increases in LDH activity, ROS, and HMGB1. This work supports stretch as a key modulator of cellular stress and inflammation in the fetal membranes. Our results showed that the modulation of the antioxidant response pathway in the fetal membranes through Nrf2 activation may be a viable approach to improve outcomes in pregnancy.
Inflammation is central to the mechanisms of parturition, but the lack of understanding of how it is controlled in normal parturition hampers our ability to understand how it may diverge resulting in preterm birth. Cell-free fetal DNA is found in the amniotic fluid, and it is thought to be able to activate inflammation as a danger-associated molecular pattern. Although its levels increases with gestational age, its effect has not been studied on the human fetal membranes. Thus, the aim of this study was to determine if the fetal DNA can trigger inflammation in the human fetal membranes and, thus, potentially contribute to the inflammatory load. Isolated human amniotic epithelial cells and fetal membrane explants were treated apically with fetal DNA causing the translocation of NF-KB into the nucleus of cells and throughout the cells of the explant layers with time. Fetal membrane explants were treated apically with either small or larger fragments of fetal DNA. IL-6, TNFα, and GM-CSF secretion was measured by ELISA, and pro-MMP2 and pro-MMP9 activity was measured by zymography from apical and basal media. Increased apical IL-6 secretion and basal pro-MMP2 activity was seen with small fragments of fetal DNA. When the data were disaggregated based on fetal sex, males had significant increases in IL-6 secretion and basal increased activity in pro-MMP2 and 9, whereas females had significantly increased basal secretion of TNFα. This was caused by the smaller fragments of fetal DNA, whereas the larger fragments did not cause any significant increases. Male fetal DNA had significantly lower percentages of methylation than females. Thus, when the cytokine and pro-MMP activity data were correlated with methylation percentage, IL-6 secretion significantly correlated negatively, whereas GM-CSF secretion positively correlated. These data support the role of fetal DNA as an inflammatory stimulus in the FM, as measured by increased NF-κB translocation, cytokine secretion, and increased pro-MMP activity. However, the data also suggested that the responses are different from FM tissues of male and female fetuses, and both the fragment size and methylation status of the fetal DNA can influence the magnitude and type of molecule secreted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.