Chemical modification of proteins is a rapidly expanding area in chemical biology. Selective installation of biochemical probes has led to a better understanding of natural protein modification and macromolecular function. In other cases such chemical alterations have changed the protein function entirely. Additionally, tethering therapeutic cargo to proteins has proven invaluable in campaigns against disease. For controlled, selective access to such modified proteins, a unique chemical handle is required. Cysteine, with its unique reactivity, has long been used for such modifications. Cysteine has enjoyed widespread use in selective protein modification, yet new applications and even new reactions continue to emerge. This Focus Review highlights the enduring utility of cysteine in protein modification with special focus on recent innovations in chemistry and biology associated with such modifications.
Dehydroalanine is a synthetic precursor to a wide array of protein modifications. We describe multiple methods for the chemical conversion of cysteine to dehydroalanine on peptides and proteins. The scope and limitations of these methods were investigated with attention paid to side reactions, scale, and aqueous-and bio-compatibility. The most general method investigated-a bis-alkylation-elimination of cysteine to dehydroalanine-was applied successfully to multiple proteins and enabled the siteselective synthesis of a glycosylated antibody.Scheme 1 Dehydroalanine is a precursor to modified peptides and proteins.
Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury‐rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low‐cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by‐product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury‐capturing polymers can be synthesised entirely from waste and supplied on multi‐kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.